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1 Introduction

There is an extensive body of theory and practice devoted to the design of feed-
back controls for linear time-invariant systems. This chapter contains a brief
introduction to the subject with emphasis on the design of digital controllers
for continuous-time systems. Before we begin it is important to appreciate
the limitations of linearity and of feedback. There are situations where it is
best not to use feedback in the control of a system. Typically, this is true for
systems that do not undergo much perturbation and for which sensors are
either unavailable or too inaccurate. There are also limits to what feedback
can accomplish. One of the most important examples is the nonlinearity that
is present in virtually all systems due to the saturation of the actuator. Satu-
ration will limit the range of useful feedback gains even when instability does
not. It is important to keep this in mind when designing controllers for real
systems, which are only linear within a limited range of input amplitudes.

The method used to design a controller depends critically on the informa-
tion available to the designer. We will describe three distinct situations:

1. The system to be controlled is available for experiment but the designer
cannot obtain a mathematical model of the system.

2. The designer has an experimentally determined frequency response of the
system but does not have other modeling information.

3. The designer has a mathematical model of the system to be controlled.

The second case arises when the underlying physics of the system is poorly
understood or when a reasonable mathematical model would be much too
complicated to be useful. For example, a typical feedback amplifier might
contain 20 or more energy storage elements. A mathematical model for this
amplifier would be at least 20th order.
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It will be easiest to understand the different design methods if we begin
with the third case, where there is an accurate mathematical model of the
plant (the system to be controlled). When such a model is available, the
feedback control of a single-input single-output (SISO) system begins with the
following picture. The plant shown in Fig. 1 typically operates in continuous

Controller D/A Plant

A/D

r(k)

y(k)

e(k) u(k) u(t) y(t)

Fig. 1. A sampled-data feedback control system

time. It can be described by its transfer function:

Y (s) = Gc(s)U(s),

where U(s), Y (s) are the Laplace transforms of the input and output signals
respectively, and

Gc(s) =
∑n−1

0 bis
i∑n

0 aisi
=
∏n−1

1 (s− zi)∏n
1 (s− pi)

. (1)

The coefficients ai, bi are real; the roots zi, pi of the numerator and denomina-
tor are the zeros and poles (respectively) of the transfer function. We assume
that these parameters are given and that they are constant.

Note that (1) limits the class of systems to those that can be adequately
approximated by such a transfer function. For a discussion of controller design
when Gc(s) includes a pure delay, described by e−sT , see “Control Issues in
Systems with Loop Delays” by Mirkin and Palmor in this handbook. The out-
put in Fig. 1 is fed directly back to the summer (comparator). For simplicity
and clarity we restrict our discussion to unity feedback systems, as in Fig. 1.
It is fairly easy to account for dynamics or filtering associated with the sensor
if necessary.

The controller (in cascade with the plant) is to be designed so that the
closed-loop system meets a given set of specifications. The controller is as-
sumed to be linear (in a sense to be made precise shortly). Modern con-
trollers are often implemented in a digital computer. This requires the use
of analog-to-digital (A/D) and digital-to-analog (D/A) converters in order to
interface with the continuous-time plant. This makes the plant, as seen by the
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controller, a sampled-data system with input u(k) and output y(k). See the
chapter, in this handbook, entitled “Basics of Sampling and Quantization” by
Santina and Stubberud for a discussion of the effects of time discretization
and D/A and A/D conversion.

2 Description of Sampled-Data Systems

The D/A block shown in Fig. 1 converts the discrete-time signal u(k) produced
by the controller to a continuous-time piecewise constant signal via a “zero-
order hold” (ZOH). Let u(k) be the discrete-time input signal, arriving at the
D/A block at multiples of the sampling period T . In the time domain, the
ZOH can be modeled as a sum of shifted unit step functions:3

u(t) =
∞∑
0

u(k)[1(t− kT ) − 1(t− (k + 1)T )].

The Laplace transform of the last expression yields

U(s) =
∞∑
0

u(k)e−kTs

︸ ︷︷ ︸
U(z)

(
1
s
− e−Ts

s

)
.

If we think of u(k) as a continuous-time impulse train, u(k)δ(t − kT ), then
the ZOH has a transfer function

GZOH(s) =
1
s
(1 − e−sT ).

From the point of view of the (discrete-time) controller, the transfer func-
tion of the sampled-data system is given by the z-transform of the ZOH/plant
system

G(s) =
1 − e−sT

s
Gc(s),

which is (by z = esT )

G(z) =
z − 1
z

Z{Gc(s)/s},

where Z{Gc(s)/s} is computed by first calculating the inverse Laplace trans-
form of Gc(s)/s to obtain a continuous-time signal, ĝ(t), then sampling this
signal, and finally computing the Z-transform of this discrete-time signal.

If we let C(z) denote the transfer function of the controller, then the
closed-loop transfer function is

3The unit step function 1(t) equals zero for t < 0, one for t ≥ 0.
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C(z) G(z)
R(z) Y(z)E(z) U(z)

Fig. 2. A sampled-data feedback control system

Y (z)
U(z)

= Gcl(z) =
G(z)C(z)

1 +G(z)C(z)
.

This is illustrated in Fig. 2.
An important point to remember about sampled-data systems is that the

real system evolves in continuous time, including the time between the sam-
pling instants. This inter-sample behavior must be accounted for in most
applications.

3 Control Specifications

The desired performance of the closed-loop system in Fig. 2 is usually de-
scribed by means of a collection of specifications. They can be organized into
four groups:

• Stability
• Steady-state error
• Transient response
• Robustness

These will be discussed in order below.

3.1 Stability

A system is bounded-input bounded-output (BIBO) stable if any bounded
input results in a bounded output. A system is internally stable if its state
decays to zero when the input is identically zero. If we limit ourselves to linear
time-invariant (LTI) systems, then all questions of stability can be settled
easily by examining the poles of the closed-loop system. In particular, the
closed-loop system is both BIBO and internally stable if and only if all of its
poles4 are inside the unit circle. Mathematically, if the poles of the closed-
loop system are denoted by pi, i = 1, 2, ..., n then the system is BIBO and
internally stable if |pi| < 1 for all i.

4This must include any poles that are cancelled by zeros.
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3.2 Steady-state error

In many situations the main objective of the closed-loop system is to track
a desired input signal closely. For example, a paper-making or metal-rolling
machine is expected to produce paper or metal of a specified thickness. Brief,
transient errors when the process starts, while undesirable, can often be ig-
nored. On the other hand, persistent tracking errors are a serious problem.
Typically, the specification will be that the steady-state error in response to
a unit step input must be exactly zero. It is surprisingly easy to meet this
requirement in most cases.

The difference between input and output is e(k), or in the z-domain,

E(z) =
R(z)

1 +G(z)C(z)
.

We can examine the steady-state error by using the “final value theorem”

e(∞)
�
= lim

k→∞
e(k) = lim

z→1
(1 − z−1)E(z).

If the input is a unit step (Us(z) = z/(z − 1)), then the last equation yields

e(∞) = lim
z→1

1
1 +G(z)C(z)

. (2)

Equation (2) indicates that the steady-state error will be zero provided that

lim
z→1

G(z)C(z) = ∞,

which will be true if G(z)C(z) has one or more poles at z = 1.
More elaborate steady-state specifications exist, but the details can easily

be derived using this example as a model or by consulting the books by Dorf
and Bishop [5] or Franklin et al. [6].

3.3 Transient response

The transient response of the closed-loop system is important in many appli-
cations. A good example is the stability and control augmentation systems
(SCASs) now common in piloted aircraft and some automobiles. These are
systems that form an inner (usually multi-input multi-output (MIMO)) con-
trol loop that improves the handling qualities of the vehicle. The pilot or driver
is the key component in an outer control loop that provides command inputs
to the SCAS. The transient characteristics of the vehicle are crucial to the
pilot’s and driver’s handling of the vehicle and to the passenger’s perception
of the ride. If you doubt this, imagine riding in or driving a car with a large
rise time or large percent overshoot (defined below).
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The transient response of an LTI system depends on the input as well as
on the initial conditions. The standard specifications assume a unit step as
the test input, and the system starts from rest, with zero initial conditions.
The resulting step response is then characterized by several of its properties,
most notably its rise time, settling time, and percent overshoot. These are
displayed in Fig. 3 and defined below.

Step Response
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Fig. 3. The step response of an LTI system and its properties

• Rise time: Usually defined to be the time required for the step response to
go from 10% of its final value to 90% of its final value.

• Settling time: Usually defined to be the time at which the step response
last crosses the lines at ±2% of its final value.

• Percent overshoot: Usually defined to be the ratio (peak amplitude minus
final value)/(final value) expressed as a percentage.

In each case there are variant definitions. For example, sometimes ±1% or
±5% is used instead of ±2% in the definition of settling time. The final value
is the steady-state value of the step response, 0.5 in Fig. 3.

3.4 Robustness

Because a system either is or is not stable, a nominally stable system may
become unstable as a result of arbitrarily small differences between the nom-
inal plant G(z) used for design and the real plant. Such differences might be
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due to inaccuracies in parameter values, variations in operating conditions,
or the deliberate omission of aspects of the nominal plant. For example, the
flexure modes of the body and wings of an aircraft are usually omitted from
the nominal plant model used for controller design. This underscores the im-
portance of knowing how “close” to instability the closed-loop system is. The
“distance to instability” is commonly quantified for SISO LTI systems in two
ways. One is the gain margin, namely the gain factor K that must be applied
to the forward path (replacing G(z)C(z) by KG(z)C(z) in Fig. 2) in order
for the system to become unstable. The other, known as the phase margin, is
the maximum amount of delay (or phase shift) e−jφM that can be introduced
in the forward path before the onset of instability.

Robustness, as a specification and property of a controlled system, has
received much attention in the research literature in recent years. This has
led to robustness tests for MIMO systems as well as a variety of tools for
designing robust control systems. See [8, 15] for more details.

4 Analysis and Design Tools

4.1 The root locus

Consider making the controller in Fig. 2 simply a gain, i.e., C(z) = K.
As K varies from 0 to ∞, the poles of Gcl(z) = KG(z)

1+KG(z) trace a set of
curves (called the “root locus”) in the complex plane. When K = 0 the poles
of the “closed-loop system” are identical to the poles of the open-loop system,
G(z). Thus, each locus starts at one of the poles of G(z). As K → ∞ it is
possible to prove that the closed-loop poles go to the open-loop zeros, including
both the finite and infinite zeros, of G(z). Given a specific value for K, it is
easy to compute the resulting closed-loop pole locations. Today, one can easily
compute the entire root locus; for example, the MATLAB command rlocus
was used to produce Fig. 4. The root locus plot is obviously useful to the
designer who plans on using a controller C(z) = K. He or she simply chooses
a desirable set of pole locations, consistent with the loci, and determines
the corresponding value of K. MATLAB has a command, rlocfind, that
facilitates this. Alternatively, one can use the sisotool graphical user interface
(GUI) in MATLAB to perform the same task. The choice of pole location is
aided by the use of a grid that displays contours of constant natural frequency
and damping ratio. We will have more to say regarding the choice of pole
locations and the use of the root locus plot in Section 5.1.

By combining the controller and the plant and multiplying by K (the
effective plant is then C(z)G(z)), the root locus can be used to determine the
gain margin. As will be explained later, the effect of various compensators
can also be analyzed and understood by appropriate use of the root locus.
Lastly, the idea of the root locus, the graphical display of the pole locations
as an implicit function of a single variable in the design, can be very useful in
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Fig. 4. The root locus when G(z) = z2−z+0.5
z4−1.9z3+1.18z2−0.31z+0.03

a variety of applications. Modern computers make it fairly easy to generate
such root loci.

4.2 The Bode, Nyquist, and Nichols plots

There are at least two situations where it is preferable to use the frequency
response of the plant rather than its transfer function G(z) for control system
design. First, when the plant is either stable or easily stabilized, it is often
possible to determine |G(ejΩT )| and ∠G(ejΩT ), where T is the time interval
between samples, experimentally for a range of values of Ω. This data is
sufficient for control design, completely eliminating the need for an analytical
expression for G(z). Second, a system with many poles and zeros can produce
a very complicated and confusing root locus. The frequency response plots of
such a system can make it easier for the designer to focus on the essentials of
the design. This second situation is exemplified by feedback amplifier design,
where a state space or transfer function model would be of high order, but
the frequency response is relatively simple.

The Nyquist plot of the imaginary part of G(ejΩT ) versus the real part
of G(ejΩT ) provides a definitive test for stability of the closed-loop system.
It also gives the exact gain and phase margins unambiguously. However, it is
not particularly easy to use for design. In contrast, both the Bode plots and
Nichols chart are very useful for design but can be ambiguous with regard
to stability. There are two Bode plots. The Bode magnitude plot presents
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20 log |G(ejΩT )| on the vertical axis versus logΩ on the horizontal axis. The
Bode phase plot shows ∠G(ejΩT ) on the vertical axis and uses the same hori-
zontal axis as the magnitude plot. The Nichols chart displays 20 log |G(ejΩT )|
on the vertical axis versus ∠G(ejΩT ) on the horizontal axis. An example of
both plots is shown in Fig. 5. Note that the lightly dotted curves on the Nichols
chart are contours of constant gain (in decibels) and phase (in degrees) of the
closed-loop system. Thus, any point on the Nichols plot for G(z) also identifies
a value of 20 log | G(z)

(1+G(z)) | and of ∠ G(z)
(1+G(z)) for some value of Ω.
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Fig. 5. The Bode plots and Nichols chart for G(z) = z2−z+0.5
z4−1.9z3+1.18z2−0.31z+0.03

The use of logarithmic scaling for the magnitude offers an important conve-
nience: The effect of a series compensator C(z) on the logarithmic magnitude
is additive, as is its effect on the phase.

5 Classical Design of Control Systems

In reality, the design of a control system usually includes the choosing of sen-
sors, actuators, computer hardware and software, A/D and D/A converters,
buffers, and, possibly, other components of the system. In a modern digital
controller the code implementing the controller must also be written. In addi-
tion, most control systems include a considerable amount of protection against
emergencies, overloads, and other exceptional circumstances. Lastly, it is now
common to include some collection and storage of maintenance information as
well. Although control theory often provides useful guidance to the designer
in all of the above-mentioned aspects of the design, it only provides explicit
answers for the choice of C(z) in Fig. 2. It is this aspect of control design that
is covered here.

5.1 Analytical model-based design

The theory of control design often begins with an explicitly known plant
G(z) and a set of specifications for the closed-loop system. The designer is
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expected to find a controller C(z) such that the closed-loop system satisfies
those specifications. In this case, a natural beginning is to plot the root locus
for G(z). If the root locus indicates that the specifications can be met by a
controller C(z) = K, then the theoretical design is done. However, it is not
a trivial matter to determine from the root locus if there is a value of K for
which the specifications are met. Notice that the example specifications in
Section 3 include both time domain and frequency domain requirements.

The designer typically needs to be able to visualize the closed-loop step
response from knowledge of the closed-loop pole and zero locations only. This
is easily done for second-order systems where there is a tight linkage between
the pole locations and transient response. Many SISO controlled systems can
be adequately approximated by a second-order system even though the actual
system is of higher order. For example, there are many systems in which an
electric motor controls an inertia. The mechanical time constants in such a
system are often several orders of magnitude slower than the electrical ones
and dominate the behavior. The electrical transients can be largely ignored
in the controller design.

A second-order system can be put in a standard form that only depends
on two parameters, the damping ratio ζ and the natural frequency ωn. The
continuous-time version is

Gcl(s) =
ωn

2

s2 + 2ζωns+ ωn
2
, (3)

where Gcl(s) denotes the closed-loop transfer function. Notice that the poles
of Gcl(s) are located at s = −ζωn ± jωn

√
1 − ζ2 = ωne

jπ±cos−1ζ . For stable
systems with a pair of complex conjugate poles, 0 ≤ ζ < 1. The description
(3) is not used for systems with real poles. The system (3) has step response

y(t) = 1− e−ζωnt√
1 − ζ2

(
sin(
√

1 − ζ2ωnt+ tan−1(

√
1 − ζ2

ζ
))

)
. (4)

The constants ζ and ωn completely determine the step response. With a little
experience a designer can then picture the approximate step response in his
or her mind while looking at the pole locations. For a system with additional
poles and zeros the actual step response can be quite different from that in
(4), but designers need insight and a way to start. An initial design that is
very far from meeting the specifications can often be modified and adjusted
into a good design after several iterations.

It is possible to create a second-order discrete-time system whose step
response exactly matches that of (4). The first step is to choose a time interval
between outputs of the discrete-time system, say Ts. Then, if the continuous-
time system has a pole at pi, the corresponding discrete-time system must
have a corresponding pole at pid = epiTs . The poles of the continuous-time
system (3) are at pi = −ζωn ± jωn

√
1 − ζ2. Thus, the poles of the discrete-

time system are at pid = e−ζωnTse±jωn

√
1−ζ2Ts . Writing the pid in polar form
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as R · ejθ (the subscripts have been dropped because there is only one value)
gives

R = e−ζωnTs (5)

θ = ±ωn

√
1 − ζ2Ts. (6)

Solving explicitly for ζ and ωn gives

ζ = ± ln(R)√
θ2 + (ln(R))2

(7)

ωn = ±
√
θ2 + (ln(R))2. (8)

This defines two curves in the z-plane, a curve of constant ζ and a curve of
constant ωn. These curves can be plotted on the root locus plot—the MAT-
LAB command is zgrid. For a second-order system in the standard form (3),
both the transient response characteristics and the phase margin are directly
related to ζ and ωn:

rise time = tr ≈
1.8
ωn

(9)

settling time = ts ≈
4.6
ζωn

(10)

percent overshoot = P.O. = 100
e−πζ/

√
1−ζ2

final value
. (11)

The final value is the constant steady-state value reached after the transients
have died out (final value = limk→∞ y(k)).

Clearly, if a designer can satisfy the specifications using only C(z) = K,
the best value of K can be chosen by plotting the root locus of G(z) and
looking at where the loci intersect the contours of constant ζ and ωn. If this
is not sufficient, there are several standard components one can try to include
in C(z) in order to alter the root locus so that its branches pass through the
desired values of ζ and ωn. The best known of these are the lead and lag
compensators defined here for discrete-time systems.

Lead compensator:

Cle(z) =
( z

zl
− 1)

( z
pl
− 1)

, 0 ≤ pl < zl ≤ 1 (12)

Lag compensator:

Cla(z) =
( z

zl
− 1)

( z
pl
− 1)

, 0 ≤ zl < pl ≤ 1. (13)
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It will be easiest to understand the different design methods if we begin
with the third case, where there is an accurate mathematical model of the
plant (the system to be controlled). When such a model is available, the
feedback control of a single-input single-output (SISO) system begins with the
following picture. The plant shown in Fig. 1 typically operates in continuous
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e(k) u(k) u(t) y(t)

Fig. 1. A sampled-data feedback control system

time. It can be described by its transfer function:

Y (s) = Gc(s)U(s),

where U(s), Y (s) are the Laplace transforms of the input and output signals
respectively, and

Gc(s) =
∑n−1

0 bis
i∑n

0 aisi
=
∏n−1

1 (s− zi)∏n
1 (s− pi)

. (1)

The coefficients ai, bi are real; the roots zi, pi of the numerator and denomina-
tor are the zeros and poles (respectively) of the transfer function. We assume
that these parameters are given and that they are constant.

Note that (1) limits the class of systems to those that can be adequately
approximated by such a transfer function. For a discussion of controller design
when Gc(s) includes a pure delay, described by e−sT , see “Control Issues in
Systems with Loop Delays” by Mirkin and Palmor in this handbook. The out-
put in Fig. 1 is fed directly back to the summer (comparator). For simplicity
and clarity we restrict our discussion to unity feedback systems, as in Fig. 1.
It is fairly easy to account for dynamics or filtering associated with the sensor
if necessary.

The controller (in cascade with the plant) is to be designed so that the
closed-loop system meets a given set of specifications. The controller is as-
sumed to be linear (in a sense to be made precise shortly). Modern con-
trollers are often implemented in a digital computer. This requires the use
of analog-to-digital (A/D) and digital-to-analog (D/A) converters in order to
interface with the continuous-time plant. This makes the plant, as seen by the



Control of Single-Input, Single-Output Systems 23

controller, a sampled-data system with input u(k) and output y(k). See the
chapter, in this handbook, entitled “Basics of Sampling and Quantization” by
Santina and Stubberud for a discussion of the effects of time discretization
and D/A and A/D conversion.

2 Description of Sampled-Data Systems

The D/A block shown in Fig. 1 converts the discrete-time signal u(k) produced
by the controller to a continuous-time piecewise constant signal via a “zero-
order hold” (ZOH). Let u(k) be the discrete-time input signal, arriving at the
D/A block at multiples of the sampling period T . In the time domain, the
ZOH can be modeled as a sum of shifted unit step functions:3

u(t) =
∞∑
0

u(k)[1(t− kT ) − 1(t− (k + 1)T )].

The Laplace transform of the last expression yields

U(s) =
∞∑
0

u(k)e−kTs

︸ ︷︷ ︸
U(z)

(
1
s
− e−Ts

s

)
.

If we think of u(k) as a continuous-time impulse train, u(k)δ(t − kT ), then
the ZOH has a transfer function

GZOH(s) =
1
s
(1 − e−sT ).

From the point of view of the (discrete-time) controller, the transfer func-
tion of the sampled-data system is given by the z-transform of the ZOH/plant
system

G(s) =
1 − e−sT

s
Gc(s),

which is (by z = esT )

G(z) =
z − 1
z

Z{Gc(s)/s},

where Z{Gc(s)/s} is computed by first calculating the inverse Laplace trans-
form of Gc(s)/s to obtain a continuous-time signal, ĝ(t), then sampling this
signal, and finally computing the Z-transform of this discrete-time signal.

If we let C(z) denote the transfer function of the controller, then the
closed-loop transfer function is

3The unit step function 1(t) equals zero for t < 0, one for t ≥ 0.
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Fig. 2. A sampled-data feedback control system

Y (z)
U(z)

= Gcl(z) =
G(z)C(z)

1 +G(z)C(z)
.

This is illustrated in Fig. 2.
An important point to remember about sampled-data systems is that the

real system evolves in continuous time, including the time between the sam-
pling instants. This inter-sample behavior must be accounted for in most
applications.

3 Control Specifications

The desired performance of the closed-loop system in Fig. 2 is usually de-
scribed by means of a collection of specifications. They can be organized into
four groups:

• Stability
• Steady-state error
• Transient response
• Robustness

These will be discussed in order below.

3.1 Stability

A system is bounded-input bounded-output (BIBO) stable if any bounded
input results in a bounded output. A system is internally stable if its state
decays to zero when the input is identically zero. If we limit ourselves to linear
time-invariant (LTI) systems, then all questions of stability can be settled
easily by examining the poles of the closed-loop system. In particular, the
closed-loop system is both BIBO and internally stable if and only if all of its
poles4 are inside the unit circle. Mathematically, if the poles of the closed-
loop system are denoted by pi, i = 1, 2, ..., n then the system is BIBO and
internally stable if |pi| < 1 for all i.

4This must include any poles that are cancelled by zeros.
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3.2 Steady-state error

In many situations the main objective of the closed-loop system is to track
a desired input signal closely. For example, a paper-making or metal-rolling
machine is expected to produce paper or metal of a specified thickness. Brief,
transient errors when the process starts, while undesirable, can often be ig-
nored. On the other hand, persistent tracking errors are a serious problem.
Typically, the specification will be that the steady-state error in response to
a unit step input must be exactly zero. It is surprisingly easy to meet this
requirement in most cases.

The difference between input and output is e(k), or in the z-domain,

E(z) =
R(z)

1 +G(z)C(z)
.

We can examine the steady-state error by using the “final value theorem”

e(∞)
�
= lim

k→∞
e(k) = lim

z→1
(1 − z−1)E(z).

If the input is a unit step (Us(z) = z/(z − 1)), then the last equation yields

e(∞) = lim
z→1

1
1 +G(z)C(z)

. (2)

Equation (2) indicates that the steady-state error will be zero provided that

lim
z→1

G(z)C(z) = ∞,

which will be true if G(z)C(z) has one or more poles at z = 1.
More elaborate steady-state specifications exist, but the details can easily

be derived using this example as a model or by consulting the books by Dorf
and Bishop [5] or Franklin et al. [6].

3.3 Transient response

The transient response of the closed-loop system is important in many appli-
cations. A good example is the stability and control augmentation systems
(SCASs) now common in piloted aircraft and some automobiles. These are
systems that form an inner (usually multi-input multi-output (MIMO)) con-
trol loop that improves the handling qualities of the vehicle. The pilot or driver
is the key component in an outer control loop that provides command inputs
to the SCAS. The transient characteristics of the vehicle are crucial to the
pilot’s and driver’s handling of the vehicle and to the passenger’s perception
of the ride. If you doubt this, imagine riding in or driving a car with a large
rise time or large percent overshoot (defined below).
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The transient response of an LTI system depends on the input as well as
on the initial conditions. The standard specifications assume a unit step as
the test input, and the system starts from rest, with zero initial conditions.
The resulting step response is then characterized by several of its properties,
most notably its rise time, settling time, and percent overshoot. These are
displayed in Fig. 3 and defined below.
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Fig. 3. The step response of an LTI system and its properties

• Rise time: Usually defined to be the time required for the step response to
go from 10% of its final value to 90% of its final value.

• Settling time: Usually defined to be the time at which the step response
last crosses the lines at ±2% of its final value.

• Percent overshoot: Usually defined to be the ratio (peak amplitude minus
final value)/(final value) expressed as a percentage.

In each case there are variant definitions. For example, sometimes ±1% or
±5% is used instead of ±2% in the definition of settling time. The final value
is the steady-state value of the step response, 0.5 in Fig. 3.

3.4 Robustness

Because a system either is or is not stable, a nominally stable system may
become unstable as a result of arbitrarily small differences between the nom-
inal plant G(z) used for design and the real plant. Such differences might be
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due to inaccuracies in parameter values, variations in operating conditions,
or the deliberate omission of aspects of the nominal plant. For example, the
flexure modes of the body and wings of an aircraft are usually omitted from
the nominal plant model used for controller design. This underscores the im-
portance of knowing how “close” to instability the closed-loop system is. The
“distance to instability” is commonly quantified for SISO LTI systems in two
ways. One is the gain margin, namely the gain factor K that must be applied
to the forward path (replacing G(z)C(z) by KG(z)C(z) in Fig. 2) in order
for the system to become unstable. The other, known as the phase margin, is
the maximum amount of delay (or phase shift) e−jφM that can be introduced
in the forward path before the onset of instability.

Robustness, as a specification and property of a controlled system, has
received much attention in the research literature in recent years. This has
led to robustness tests for MIMO systems as well as a variety of tools for
designing robust control systems. See [8, 15] for more details.

4 Analysis and Design Tools

4.1 The root locus

Consider making the controller in Fig. 2 simply a gain, i.e., C(z) = K.
As K varies from 0 to ∞, the poles of Gcl(z) = KG(z)

1+KG(z) trace a set of
curves (called the “root locus”) in the complex plane. When K = 0 the poles
of the “closed-loop system” are identical to the poles of the open-loop system,
G(z). Thus, each locus starts at one of the poles of G(z). As K → ∞ it is
possible to prove that the closed-loop poles go to the open-loop zeros, including
both the finite and infinite zeros, of G(z). Given a specific value for K, it is
easy to compute the resulting closed-loop pole locations. Today, one can easily
compute the entire root locus; for example, the MATLAB command rlocus
was used to produce Fig. 4. The root locus plot is obviously useful to the
designer who plans on using a controller C(z) = K. He or she simply chooses
a desirable set of pole locations, consistent with the loci, and determines
the corresponding value of K. MATLAB has a command, rlocfind, that
facilitates this. Alternatively, one can use the sisotool graphical user interface
(GUI) in MATLAB to perform the same task. The choice of pole location is
aided by the use of a grid that displays contours of constant natural frequency
and damping ratio. We will have more to say regarding the choice of pole
locations and the use of the root locus plot in Section 5.1.

By combining the controller and the plant and multiplying by K (the
effective plant is then C(z)G(z)), the root locus can be used to determine the
gain margin. As will be explained later, the effect of various compensators
can also be analyzed and understood by appropriate use of the root locus.
Lastly, the idea of the root locus, the graphical display of the pole locations
as an implicit function of a single variable in the design, can be very useful in
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Fig. 4. The root locus when G(z) = z2−z+0.5
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a variety of applications. Modern computers make it fairly easy to generate
such root loci.

4.2 The Bode, Nyquist, and Nichols plots

There are at least two situations where it is preferable to use the frequency
response of the plant rather than its transfer function G(z) for control system
design. First, when the plant is either stable or easily stabilized, it is often
possible to determine |G(ejΩT )| and ∠G(ejΩT ), where T is the time interval
between samples, experimentally for a range of values of Ω. This data is
sufficient for control design, completely eliminating the need for an analytical
expression for G(z). Second, a system with many poles and zeros can produce
a very complicated and confusing root locus. The frequency response plots of
such a system can make it easier for the designer to focus on the essentials of
the design. This second situation is exemplified by feedback amplifier design,
where a state space or transfer function model would be of high order, but
the frequency response is relatively simple.

The Nyquist plot of the imaginary part of G(ejΩT ) versus the real part
of G(ejΩT ) provides a definitive test for stability of the closed-loop system.
It also gives the exact gain and phase margins unambiguously. However, it is
not particularly easy to use for design. In contrast, both the Bode plots and
Nichols chart are very useful for design but can be ambiguous with regard
to stability. There are two Bode plots. The Bode magnitude plot presents
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20 log |G(ejΩT )| on the vertical axis versus logΩ on the horizontal axis. The
Bode phase plot shows ∠G(ejΩT ) on the vertical axis and uses the same hori-
zontal axis as the magnitude plot. The Nichols chart displays 20 log |G(ejΩT )|
on the vertical axis versus ∠G(ejΩT ) on the horizontal axis. An example of
both plots is shown in Fig. 5. Note that the lightly dotted curves on the Nichols
chart are contours of constant gain (in decibels) and phase (in degrees) of the
closed-loop system. Thus, any point on the Nichols plot for G(z) also identifies
a value of 20 log | G(z)

(1+G(z)) | and of ∠ G(z)
(1+G(z)) for some value of Ω.
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Fig. 5. The Bode plots and Nichols chart for G(z) = z2−z+0.5
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The use of logarithmic scaling for the magnitude offers an important conve-
nience: The effect of a series compensator C(z) on the logarithmic magnitude
is additive, as is its effect on the phase.

5 Classical Design of Control Systems

In reality, the design of a control system usually includes the choosing of sen-
sors, actuators, computer hardware and software, A/D and D/A converters,
buffers, and, possibly, other components of the system. In a modern digital
controller the code implementing the controller must also be written. In addi-
tion, most control systems include a considerable amount of protection against
emergencies, overloads, and other exceptional circumstances. Lastly, it is now
common to include some collection and storage of maintenance information as
well. Although control theory often provides useful guidance to the designer
in all of the above-mentioned aspects of the design, it only provides explicit
answers for the choice of C(z) in Fig. 2. It is this aspect of control design that
is covered here.

5.1 Analytical model-based design

The theory of control design often begins with an explicitly known plant
G(z) and a set of specifications for the closed-loop system. The designer is
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expected to find a controller C(z) such that the closed-loop system satisfies
those specifications. In this case, a natural beginning is to plot the root locus
for G(z). If the root locus indicates that the specifications can be met by a
controller C(z) = K, then the theoretical design is done. However, it is not
a trivial matter to determine from the root locus if there is a value of K for
which the specifications are met. Notice that the example specifications in
Section 3 include both time domain and frequency domain requirements.

The designer typically needs to be able to visualize the closed-loop step
response from knowledge of the closed-loop pole and zero locations only. This
is easily done for second-order systems where there is a tight linkage between
the pole locations and transient response. Many SISO controlled systems can
be adequately approximated by a second-order system even though the actual
system is of higher order. For example, there are many systems in which an
electric motor controls an inertia. The mechanical time constants in such a
system are often several orders of magnitude slower than the electrical ones
and dominate the behavior. The electrical transients can be largely ignored
in the controller design.

A second-order system can be put in a standard form that only depends
on two parameters, the damping ratio ζ and the natural frequency ωn. The
continuous-time version is

Gcl(s) =
ωn

2

s2 + 2ζωns+ ωn
2
, (3)

where Gcl(s) denotes the closed-loop transfer function. Notice that the poles
of Gcl(s) are located at s = −ζωn ± jωn

√
1 − ζ2 = ωne

jπ±cos−1ζ . For stable
systems with a pair of complex conjugate poles, 0 ≤ ζ < 1. The description
(3) is not used for systems with real poles. The system (3) has step response

y(t) = 1− e−ζωnt√
1 − ζ2

(
sin(
√

1 − ζ2ωnt+ tan−1(

√
1 − ζ2

ζ
))

)
. (4)

The constants ζ and ωn completely determine the step response. With a little
experience a designer can then picture the approximate step response in his
or her mind while looking at the pole locations. For a system with additional
poles and zeros the actual step response can be quite different from that in
(4), but designers need insight and a way to start. An initial design that is
very far from meeting the specifications can often be modified and adjusted
into a good design after several iterations.

It is possible to create a second-order discrete-time system whose step
response exactly matches that of (4). The first step is to choose a time interval
between outputs of the discrete-time system, say Ts. Then, if the continuous-
time system has a pole at pi, the corresponding discrete-time system must
have a corresponding pole at pid = epiTs . The poles of the continuous-time
system (3) are at pi = −ζωn ± jωn

√
1 − ζ2. Thus, the poles of the discrete-

time system are at pid = e−ζωnTse±jωn

√
1−ζ2Ts . Writing the pid in polar form
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Notice that the lead compensator has its zero to the right of its pole and the
lag compensator has its zero to the left of its pole.

The principle behind both compensators is the same. Consider the real
singularities (poles and zeros) of the open-loop system. Suppose that the
rightmost real singularity is a pole. This open-loop real pole will move to-
wards a real open-loop zero placed to its left when the loop is closed with a
positive gain K. If the open-loop system has a pole near z = 1, it is usually
possible to speed up the closed-loop transient response by adding a zero to its
left. For several reasons (the most important will be explained in Section 6
on limitations of control) one should never add just a zero. Thus, one must
add a real pole to the left of the added zero, thereby creating a lead compen-
sator. This lead compensator will generally improve the transient response.
The best value of the gain K can be determined using the root locus plot of
the combined plant and lead compensator.

The lag compensator is used to reduce the steady-state error. This is done
by adding a real pole near the point z = +1. Adding only a pole will badly
slow the closed-loop transient response. Adding a real zero to the left of the
pole at z = 1 will pull the closed-loop pole to the left for positive gain K,
thereby improving the transient response of the closed-loop system.

Another common compensator is the notch filter. It is used when the plant
has a pair of lightly damped open-loop poles. These poles can severely limit
the range of useful feedback gains, K, because their closed-loop counterparts
may become unstable for relatively small values of K. Adding a compensator
that has a pair of complex conjugate zeros close to these poles will pull the
closed-loop poles towards the zeros as K is increased. One must be careful
about the placement of the zeros. If they are placed wrongly, the root locus
from the undesirable poles to the added zeros will loop out into the unstable
region before returning inside the unit circle. If they are properly placed, this
will not happen. Again, one must also add a pair of poles, or the compensator
will cause other serious problems, as explained in Section 6.1.

The use of lead and lag compensators is illustrated in the following exam-
ple.

Design example

Consider a plant with G(s) = 600/(s + 1)(s + 6)(s + 40). This is sampled at
T = 0.0167s resulting in G(z) = 0.000386(z+3.095)(z+0.218)/(z−0.983)(z−
0.905)(z − 0.513). The root locus for this plant is shown on the left in Fig. 6
as a solid line. Closing the loop with a gain of K = 1 results in the closed-
loop step response shown at the right as a solid line. The rise time is 0.47,
the settling time is 1.35, and the steady-state value is 0.71. There are two
aspects of this design that one might want to improve. The step response is
rather slow. We would like to make the rise and settling times smaller. The
steady-state error in response to a unit step is rather large, 0.29. We would
like to make it smaller. Note that increasing the gain from 1 to a larger value
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would improve both of these aspects of the step response, but the cost would
be a more oscillatory response with a larger overshoot as well as a less robust
controller.

A lead compensator, Clead(z) = K(z − 0.905)/(z − 0.794), is added to
reduce the rise and settling times without compromising either robustness
or overshoot. The zero is placed directly on top of the middle pole of the
original plant. The pole is placed so that the largest value of u(k) in the step
response of the closed-loop system is less than 4. The resulting root locus
is shown as a dotted line in Fig. 6. Closing the loop with K = 4 results in
the dotted step response shown on the right. The new rise time is 0.267, the
settling time is 0.735, and the steady-state value is 0.821. Notice that the
lead compensator has improved every aspect of the closed-loop step response.
However, the steady-state error in response to a unit step input is still 0.179.

Finally, a lag compensator is added to further reduce the steady-state
error in response to a unit step. Adding the lag element makes the complete
controller Cleadlag(z) = K(z − 0.905)(z − 0.985)/(z − 0.794)(z − 0.999). The
pole of the lag compensator is placed close to z = 1. The zero is placed just
to the right of the pole of the original plant at z = 0.983. With these choices,
a reasonable gain pulls the added open-loop pole almost onto the added zero.
This gives a small steady-state error without significantly compromising the
transient response. The new root locus is shown as a dashed line in Fig. 6.
The closed-loop step response using this controller is shown dashed at the
right of the figure. The rise time is 0.284, the settling time is 0.668, and the
steady-state value is 0.986. Note that the steady-state error is now less than
0.02 and the other aspects of the response are nearly as good as they were
with only the lead compensator.

5.2 Frequency response-based design

There are two common reasons why one might base a control system design
only on the frequency response plots, i.e., on plots of |G(jω)| and ∠G(jω)
versus ω. First, there are systems for which the frequency response can be
determined experimentally although an analytical expression for the transfer
function is unknown. Although one could estimate a transfer function from
this data, it is arguably better not to introduce additional modelling errors
by doing this. Second, some systems that are very high order have relatively
simple frequency responses. The best example of this is an electronic au-
dio amplifier, which may have approximately 20 energy storage elements. Its
transfer function would have denominator degree around 20. Its frequency re-
sponse plots would be fairly simple, especially since its purpose is to amplify
audio signals. In fact, this was the application that drove the work of Bode and
Nyquist on feedback. It is also somewhat easier to design a lag compensator
in the frequency domain.

One can use either the Bode plots or the Nichols chart of the open-loop
system as the basis for the design. Both the gain and phase margin can be
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Notice that the lead compensator has its zero to the right of its pole and the
lag compensator has its zero to the left of its pole.

The principle behind both compensators is the same. Consider the real
singularities (poles and zeros) of the open-loop system. Suppose that the
rightmost real singularity is a pole. This open-loop real pole will move to-
wards a real open-loop zero placed to its left when the loop is closed with a
positive gain K. If the open-loop system has a pole near z = 1, it is usually
possible to speed up the closed-loop transient response by adding a zero to its
left. For several reasons (the most important will be explained in Section 6
on limitations of control) one should never add just a zero. Thus, one must
add a real pole to the left of the added zero, thereby creating a lead compen-
sator. This lead compensator will generally improve the transient response.
The best value of the gain K can be determined using the root locus plot of
the combined plant and lead compensator.

The lag compensator is used to reduce the steady-state error. This is done
by adding a real pole near the point z = +1. Adding only a pole will badly
slow the closed-loop transient response. Adding a real zero to the left of the
pole at z = 1 will pull the closed-loop pole to the left for positive gain K,
thereby improving the transient response of the closed-loop system.

Another common compensator is the notch filter. It is used when the plant
has a pair of lightly damped open-loop poles. These poles can severely limit
the range of useful feedback gains, K, because their closed-loop counterparts
may become unstable for relatively small values of K. Adding a compensator
that has a pair of complex conjugate zeros close to these poles will pull the
closed-loop poles towards the zeros as K is increased. One must be careful
about the placement of the zeros. If they are placed wrongly, the root locus
from the undesirable poles to the added zeros will loop out into the unstable
region before returning inside the unit circle. If they are properly placed, this
will not happen. Again, one must also add a pair of poles, or the compensator
will cause other serious problems, as explained in Section 6.1.

The use of lead and lag compensators is illustrated in the following exam-
ple.

Design example

Consider a plant with G(s) = 600/(s + 1)(s + 6)(s + 40). This is sampled at
T = 0.0167s resulting in G(z) = 0.000386(z+3.095)(z+0.218)/(z−0.983)(z−
0.905)(z − 0.513). The root locus for this plant is shown on the left in Fig. 6
as a solid line. Closing the loop with a gain of K = 1 results in the closed-
loop step response shown at the right as a solid line. The rise time is 0.47,
the settling time is 1.35, and the steady-state value is 0.71. There are two
aspects of this design that one might want to improve. The step response is
rather slow. We would like to make the rise and settling times smaller. The
steady-state error in response to a unit step is rather large, 0.29. We would
like to make it smaller. Note that increasing the gain from 1 to a larger value
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would improve both of these aspects of the step response, but the cost would
be a more oscillatory response with a larger overshoot as well as a less robust
controller.

A lead compensator, Clead(z) = K(z − 0.905)/(z − 0.794), is added to
reduce the rise and settling times without compromising either robustness
or overshoot. The zero is placed directly on top of the middle pole of the
original plant. The pole is placed so that the largest value of u(k) in the step
response of the closed-loop system is less than 4. The resulting root locus
is shown as a dotted line in Fig. 6. Closing the loop with K = 4 results in
the dotted step response shown on the right. The new rise time is 0.267, the
settling time is 0.735, and the steady-state value is 0.821. Notice that the
lead compensator has improved every aspect of the closed-loop step response.
However, the steady-state error in response to a unit step input is still 0.179.

Finally, a lag compensator is added to further reduce the steady-state
error in response to a unit step. Adding the lag element makes the complete
controller Cleadlag(z) = K(z − 0.905)(z − 0.985)/(z − 0.794)(z − 0.999). The
pole of the lag compensator is placed close to z = 1. The zero is placed just
to the right of the pole of the original plant at z = 0.983. With these choices,
a reasonable gain pulls the added open-loop pole almost onto the added zero.
This gives a small steady-state error without significantly compromising the
transient response. The new root locus is shown as a dashed line in Fig. 6.
The closed-loop step response using this controller is shown dashed at the
right of the figure. The rise time is 0.284, the settling time is 0.668, and the
steady-state value is 0.986. Note that the steady-state error is now less than
0.02 and the other aspects of the response are nearly as good as they were
with only the lead compensator.

5.2 Frequency response-based design

There are two common reasons why one might base a control system design
only on the frequency response plots, i.e., on plots of |G(jω)| and ∠G(jω)
versus ω. First, there are systems for which the frequency response can be
determined experimentally although an analytical expression for the transfer
function is unknown. Although one could estimate a transfer function from
this data, it is arguably better not to introduce additional modelling errors
by doing this. Second, some systems that are very high order have relatively
simple frequency responses. The best example of this is an electronic au-
dio amplifier, which may have approximately 20 energy storage elements. Its
transfer function would have denominator degree around 20. Its frequency re-
sponse plots would be fairly simple, especially since its purpose is to amplify
audio signals. In fact, this was the application that drove the work of Bode and
Nyquist on feedback. It is also somewhat easier to design a lag compensator
in the frequency domain.

One can use either the Bode plots or the Nichols chart of the open-loop
system as the basis for the design. Both the gain and phase margin can be
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Fig. 6. The root loci and step responses for the design example

read directly from these graphs, making them the most important criteria for
design in the frequency domain. There is a convenient relationship between
the phase margin and the damping ratio for second-order systems such as (3).
It is

ζ ≈ (phase margin)/100. (14)

The effect of a pure gain controller, C(s) = K, on the Bode magnitude plot is
simply a vertical shift by 20 log |K|. The effect on the Nichols chart is a vertical
shift by the same amount. Using (14) and the gain and phase margins, the
designer can choose a value of the gain K that meets the specifications as in
the continuous-time case. If the specifications cannot be satisfied by a pure
gain controller, then the various compensators can be tried.

The basic idea behind lead-lag compensation in the frequency domain is
that the closed-loop transient response is dominated by the open-loop fre-
quency response near the gain and phase crossover frequencies, defined to be
the frequencies at which the gain crosses 0 dB and the phase crosses −180◦.
The steady-state behavior is determined by the low frequency characteristics
of the open-loop frequency response. Thus, the general idea is to add a lag
compensator whenever the closed-loop steady-state error is too large. The pole
and zero of the lag compensator are placed at low enough frequencies so that
they do not affect the open-loop frequency response near the crossover fre-
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quencies. On the other hand, the lead compensator is added in the vicinity of
the phase crossover frequency where it adds phase margin, thereby improving
the transient response as suggested by (14).

The notch filter is used to cancel a large peak in the open-loop frequency
response (a resonant peak). The reason it is called a notch filter is evident from
its Bode plot. The notch filter has a “notch” in the magnitude of its transfer
function. This notch is used to cancel the peak in the open-loop frequency
response. The exact placement of the notch is tricky. See [6] for the details.

The design example developed previously using the root locus is repeated
below in terms of frequency responses.

Design example revisited

The Bode and Nichols plots for the open-loop plant G(z) = 0.000386(z +
3.095)(z+0.218)/(z−0.983)(z−0.905)(z−0.513) (the same as in Section 5.1),
this time with an additional gain of 1.2, are shown in Fig. 7 as solid curves.
Closing the loop with unity gain results in a gain margin of 22 dB, a phase
margin of 83 degrees, a gain crossover frequency of 2.6 rad/s, and a phase
crossover frequency of 14.4 rad/s. Although the gain is slightly higher than it
was in our root locus-based design, the closed-loop step response is nearly the
same as before, so it is not reproduced here. There is slightly more overshoot
and the rise and settling times are slightly faster. We chose the higher gain to
emphasize the similarity among the three frequency responses.

The same lead compensator as in the root locus design example is added to
speed up the closed-loop response to a unit step. Because of the link between
phase margin and damping ratio, ζ (see (14)) we know that increasing the
phase margin will speed up the step response. The Bode and Nichols plots
of G(z)Clead(z) with a gain of K = 4, exactly as in the root locus case, are
shown dotted in Fig. 7. Note the slightly more positive phase angle in the
critical region near the gain and phase crossover frequencies. The resulting
gain margin is 19 dB; the phase margin is 78 degrees; the gain crossover is
at 4.25 rad/s; the phase crossover is at 20.4 rad/s. We already know that the
resulting closed-loop step response is considerably faster. If we did not know
the root locus, we would have placed the maximum phase lead of the lead
compensator close to the phase crossover of the original plant.

The same lag compensator as in Section 5.1 is added to reduce the
steady-state error in response to a unit step. The Bode and Nichols plots
of G(z)Cleadlag(z) with a gain of K = 4, exactly as in the root locus
case, are shown dashed in Fig. 7. The frequency response plots show that
the lag compensator greatly increases the DC gain of the open-loop system
(Cleadlag(z)G(z)) while making minimal changes to the frequency response
near the critical frequencies. The resulting gain margin is 18 dB; the phase
margin is 67 degrees; the gain crossover is at 4.31 rad/s; the phase crossover
is at 19.7 rad/s. The lag compensator is placed so that all of its effects occur
at lower frequencies than the critical ones.
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Fig. 7. The Bode and Nichols plots for the design example

5.3 PID control

There are many situations in which it would be inconvenient or impractical to
measure the frequency response of the plant and in which the transfer function
is either unknown or far too complicated to use for controller design. There
are many good examples in the process industries, such as paper-making ma-
chines. In many of these applications the specifications are not too demanding.
Again, the paper-making machine is illustrative: the transient response is not
very important, but tight steady-state control of the thickness is. This is the
paradigmatic use of PID control, although the method is also used for much
more demanding applications, including many for which a good plant model
is known.

The discrete-time (proportional + integral + derivative) (PID) controller
is derived from the original continuous-time version. A realistic, as opposed
to academic, version of the continuous-time PID controller is

CPID(s) = KP +KI
1
s

+KD
s

1 + sTf
. (15)

It is also common in practice to use (αR(s)−Y (s)) as the input to the deriva-
tive term (coefficient KD) instead of (R(s)−Y (s)). Often, α is set to zero. The
continuous-time controller can be discretized in a variety of ways, each with
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its advantages and disadvantages; see [1]. The most commonly used method
is the backwards difference method, which is known to be well behaved. The
result can be written as

u(k) = uP (k) + uI(k) + uD(k), (16)

where

uP (k) = KP (r(k) − y(k)) (17)
uI(k) = uI(k − 1) +KIT (r(k) − y(k)) (18)

uD(k) = (1 +
T

Tf
)
−1

uD(k − 1) − KD

Tf
(

1
1 + T

Tf

)(y(k) − y(k − 1)), (19)

where T is the sampling interval and Tf is a filtering coefficient.
One can purchase a PID controller as an essentially turnkey device. It

is connected to the plant and the 3–5 parameters of the controller are then
adjusted (tuned) to the particular plant. There is an extensive literature on
tuning PID controllers dating back at least to Ziegler and Nichols [1]. The basic
ideas are relatively simple if one sets the D-terms to zero. One straightforward
tuning method is to set the D- and I-terms to zero and gradually increase the
gain KP just until the closed-loop step response becomes unstable. Reducing
the gain by 50%, for example, will produce a closed-loop system with a gain
margin of 6 dB. For a proportional controller this is regarded as a fairly good
choice of gain. If this is sufficient to meet the specifications, there is no more
to be done.

If the steady-state error is too large, an I-term must be added to the
controller. Doing so adds a pole at z = +1, thereby eliminating the steady-
state error in response to a unit step. It will also add a zero at −KI/KP in the
continuous-time case. Some modest fine-tuning of the two gains will improve
the transient response without, of course, changing the steady-state error.
The well-known but overly aggressive Ziegler–Nichols rules suggest decreasing
KP to 40% of the value of KP that caused instability and then choosing
KI = KP /(0.8Tu), where Tu is the period of the oscillation that resulted
when KP was chosen to make the closed-loop system unstable.

Tuning the D-term is notoriously difficult. Its basic role is to add a zero
and a pole to the controller. If chosen properly this zero and pole will act as
a lead compensator and speed up the closed-loop transient response. See [1]
for details.

If one has a good mathematical description of the plant, then either a root
locus plot, a Bode plot, or a Nichols chart of the open-loop system can be used
to choose the parameters of the PID controller (which is basically a lead-lag
controller with the lag pole at z = 1) to achieve a desired step response.

It is now possible to buy “self-tuning” PID controllers. They are available
from several manufacturers and they use a variety of tuning methods. The
details are often proprietary. Generally, an operator commands the controller
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to enter its tuning mode. The controller then tunes itself and switches to
operate mode and stays there until it is again commanded to tune itself.

5.4 Design by emulation

In the discussion above, we have described the basics of direct digital design,
meaning that the plant is first discretized (taking into account the effects of
sampling and ZOH) and a discrete-time controller is designed.

An alternative is to initially ignore the effects of D/A and A/D conver-
sion and design a continuous compensator C(s) for the continuous time plant
G(s). The continuous-time compensator is then discretized to obtain Cd(z).
This procedure, known as design by emulation, may be used when a working
continuous-time controller already exists or when the designer has very good
intuition for continuous-time control.

The conversion of a continuous-time controller to an approximately equiv-
alent discrete-time controller can be done in a variety of ways. Two simple
and useful methods require only that s in the continuous-time controller be
replaced by the appropriate formula involving z. They are:

• Backward rule: s = (z−1)
Ts

• Tustin’s method: s = 2
Ts

(z−1)
(z+1) .

A third method is only slightly more complicated.

• Matched pole-zero (MPZ) method:

Recall that the poles of a continuous-time transfer function C(s) are re-
lated to the poles of its z-transform Cd(z) = Z{C(s)}(z) by

z = esT ,

where T is the sampling period. One can then attempt to obtain a digital
version of C(s) by applying this relationship to its zeros as well as its poles (we
stress that this represents only an approximation—the zeros are not related by
z = esT ). The resulting discrete-time transfer function Cd(z) is then obtained
with a minimum of calculations.

If C(s) is strictly proper (the degree of its denominator is greater than
that of its numerator) it is sometimes desirable to further modify the resulting
C(z) by multiplying it repeatedly by (1+ z−1) (adding zeros at z = −1) until
the resulting transfer function has denominator degree equal to that of the
numerator, or equal to that of the numerator minus one (“modified matched
pole-zero method”). Doing so has the effect of “averaging” past and present
inputs. The MPZ method requires inputs of up to e(k+1) in order to produce
u(k+ 1). This may be undesirable in applications where the time to compute
u(k+1) is significant compared with the sampling period. The modified MPZ
method does not suffer from this drawback, as it requires only “past” inputs
to produce the current output.
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The approximations obtained via the methods described here are typi-
cally useful at frequencies below 1/4 of the sampling rate. Furthermore, be-
cause design by emulation ignores the effect of the ZOH, the performance
of the resulting controllers yields reasonable results at sampling rates that
are approximately 20 times or higher than the bandwidth of the continuous-
time plant. For lower sampling rates, it is important to analyze the resulting
closed-loop system in discrete time to ensure adequate performance.

5.5 Advanced methods of control

One method of control design is only slightly more involved than those dis-
cussed so far and lends itself very well to digital implementation. It is known
as the two-degrees-of-freedom (2DOF) method. The basic idea is to divide the
controller into two nearly independent components as shown in Fig. 8. The

Cff(z) Cfb(z) G(z)
R(z) Y(z)

Fig. 8. A 2DOF controller

feedback component of the controller, Cfb(z), is designed to deal primarily
with disturbances while the feedforward component Cff (z) deals mainly with
the response to a command signal R(z). Although Cff (z) acts open loop, it
can be realized very accurately on the computer. Thus, there should be min-
imal uncertainty associated with its behavior. The feedback portion of the
controller, Cfb(z), is designed to minimize the effects of plant uncertainty and
to make the closed-loop system have a gain of one within the frequency range
of possible inputs.

There is a very large literature on controller design. There are state-space
methods for arbitrarily placing the poles of the closed-loop system assuming
only that the open-loop system is controllable and observable [3]. Because it
is not at all obvious where the closed-loop poles should be placed, there is also
a large literature on optimal control. For linear systems, the linear quadratic
regulator and the H2 and H∞ methods are particularly important [15]. There
has also been much research and some applications in the field of nonlinear
control. Introductions to all of these topics can be found in [9].

6 Limitations on Control Systems

It is very important for the control system designer to be aware of several limi-
tations on the stability and performance of real control systems. These limita-
tions are due to inaccuracies in the plant model, inevitable disturbances that
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enter the system, actuator saturation, and fundamental unavoidable trade-offs
in the design. The first step in appreciating these limitations is to examine
the more realistic picture of a SISO control loop in Fig. 9, where Gn(z) is the

Saturation

C(z) Gn(z) Gme(z)
R(z)

Di(z) Do(z)

Dm(z)

Y(z)U(z)

Fig. 9. A feedback control system with input, output, and measurement distur-
bances

nominal plant which is used in the design. The actual plant is Gme(z)Gn(z)
where Gme(z) = (1+GΔ(z)) denotes modelling errors. Generally, only bounds
are known for the multiplicative modelling error, GΔ(z). In particular, in a
networked and embedded control system the phase of GΔ(z) is known only
to lie within limits determined by the timing accuracy of the system. The
additional inputs are Di(z) representing input disturbances, Do(z) for output
disturbances, and Dm(z) for measurement noise. Note that we have omit-
ted any sensor dynamics in order to focus on the most essential aspects of
robustness and sensitivity.

LTI control systems are also limited by the fundamental Bode gain-phase
relation. The precise theorem can be found in [14]. A simple rule of thumb
based on Bode’s result is that each −20n dB/decade of reduction in the open-
loop gain implies ≈ −90◦n of phase shift, where n is a positive integer. This
link between gain and phase is easily seen in lead and lag compensators.
A lead compensator basically adds positive phase to improve the transient
performance of the closed-loop system. The price paid for this positive phase
is an undesirable increase in high frequency gain. A lag compensator is used
to add to the DC gain of the open-loop system, thus decreasing the steady-
state error of the closed-loop system. The price paid for this improvement is
an undesirable negative phase shift.

6.1 Sensitivity to disturbances

The effect of the disturbances on the performance of the control system can
be studied by writing the transfer functions from each disturbance to Y (z)
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and U(z). The effect of the disturbances on U(z) is particularly important
because of saturation. The transfer functions are written using the nominal
plant so they are nominal sensitivities.

Y (z)
R(z)

= Gcl(z) =
Gn(z)C(z)

1 +Gn(z)C(z)

Y (z)
Di(z)

= Sio(z) =
Gn(z)

1 +Gn(z)C(z)

Y (z)
Do(z)

= So(z) =
1

1 +Gn(z)C(z)

Y (z)
Dm(z)

= −Gcl(z) = − Gn(z)C(z)
1 +Gn(z)C(z)

U(z)
Dm(z)

= Sou(z) =
C(z)

1 +Gn(z)C(z)
(20)

Notice that Sou(z) is also the transfer function from R(z) and Do(z) to U(z),
which explains why it is a bad idea to use a zero as a lead compensator without
also including a pole. Such a choice would result in C(z) = (z − zl), and this
would cause Sou(z) to amplify any high frequency components of R(z), Do(z),
and Dm(z). This would result in actuator saturation on noise. Ultimately, the
placement of the pole in a lead compensator and hence, the amount of phase
lead possible is limited by the amplitude of the disturbances.

A fundamental limit on controller performance is easily derived from the
transfer functions above:

Gcl(z) + So(z) = 1, for all z ∈ C. (21)

Another limitation follows from the fact that Gcl(z) is the transfer function
from both −Dm(z) and R(z) to Y (z). This makes it very desirable to keep
|C(z)| small at those frequencies at which R(z) is zero. A typical example
is in aircraft SCAS where pilot inputs and aircraft maneuvers are known
to be limited to relatively low frequencies, implying that any signal at high
frequency must be noise. Now consider the implications of (21) for a closed-
loop system having the property that |Gcl(z)| is small at high frequency.
Such a system will pass output disturbances at those frequencies without
attenuation.

6.2 Robustness

It is important that the closed-loop system remain stable despite the differ-
ences between the nominal plant used for the controller design and the real
plant. There has been extensive research devoted to robust stability in recent
years. There are many results available; see [9, 15]. The following is a simple
example from [8].
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Theorem 1. Consider a plant with nominal transfer function Gn(z) and ac-
tual transfer function Gn(z)(1 + GΔ(z)). Assume that C(z) is a controller
that achieves internal stability for Gn(z). Assume also that Gn(z)C(z) and
Gn(z)(1 +GΔ(z))C(z) both have the same number of unstable poles. Then a
sufficient condition for stability of the true feedback loop obtained by applying
the controller C(z) to the actual plant is that

|Gcl(z)||GΔ(z)| =
∣∣∣∣ Gn(z)C(z)
1 +Gn(z)C(z)

∣∣∣∣ |GΔ(z)| < 1. (22)

The proof is a straightforward application of the Nyquist stability theorem.
Notice that the theorem holds regardless of the uncertainties in the phase.
Thus, it is valuable in ensuring that delays due to networking and computing
cannot compromise the stability of the real closed-loop system.

The use of the theorem can be understood by dividing the frequency re-
sponse of the nominal open-loop system and compensator, Gn(z)C(z), into
three regions. In the low frequency region, it is normally true that |GΔ(z)| is
small. Thus, the controller can have high gain and the nominal closed-loop
system can have a magnitude near one without compromising stability robust-
ness. At high frequencies, |GΔ(z)| is usually large but |Gn(z)C(z)| is small.
Again, stability robustness is not a problem because the nominal closed-loop
system has small magnitude. The critical region is the frequency range near
the gain and phase crossover frequencies. In this region, the bounds on |GΔ(z)|
are very important.

6.3 Trade-offs

The following theorem [14], due originally to Bode [4], proves that there is a
fundamental trade-off inherent in any attempt to reduce the sensitivity, So(z),
of a closed-loop system.

Theorem 2. Consider a SISO LTI discrete-time open-loop system Gn(z)C(z)
with its corresponding stable closed-loop system Gcl(z) = Gn(z)C(z)

1+Gn(z)C(z) and
sensitivity So(z) = 1

1+Gn(z)C(z) . Then∫ π

−π

ln |So(ejω)|dω = 2π
∑

i

(ln |pi| − ln |γ + 1|) (23)

where the pi are the unstable poles of the open-loop system and
γ = limz→∞Gn(z)C(z).

Notice that if the open-loop system is stable and strictly proper, then the
theorem implies that

∫ π

−π
ln |So(ejω)|dω = 0. Typically, one wants to design

the controller to keep the sensitivity small at low frequencies. The theorem
proves that the inevitable consequence is that the controller increases the
sensitivity at high frequencies.
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7 Beyond This Introduction

There are many good textbooks on classical control. Two popular examples
are [5] and [6]. A less typical and interesting alternative is the recent textbook
[8]. All three of these books have at least one chapter devoted to the basics
of digital control. Textbooks devoted to digital control are less common, but
there are some available. The best known is probably [7]. Other possibilities
are [2, 12,13] An excellent book about PID control is the one by Aström and
Hägglund [1]. Good references on the limitations of control are [10] and [11].
Bode’s book [4] is still interesting, although the emphasis is on vacuum tube
circuits.
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