
Low-cost Anonymous Timed-Release Encryption

D. Hristu-Varsakelis, K. Chalkias, and G. Stephanides
University of Macedonia

Department of Applied Informatics
Computational Systems and Software Engineering Laboratory

Thessaloniki, Greece
dcv@uom.gr, chalkias@java.uom.gr, steph@uom.gr

Abstract

We propose a new server-based efficient protocol for
time-release encryption (TRE), or – as sometimes referred
to — sending information “into the future”. As with other
recently-proposed schemes, ours is based on the use of bi-
linear pairings on any Gap Diffie-Hellman group, allowing
absolute release time of the encrypted data. Our protocol
possesses the required properties regarding user anonymity
and server passivity. It also provides almost-costless scal-
ability in settings with multiple time-servers, and improves
significantly upon existing TRE schemes, in terms of compu-
tational and communication cost. This makes our approach
well-suited to a number of emerging e-applications that re-
quire future decryption of confidential data.

Keywords: cryptographic protocols, timed-release en-
cryption, bilinear pairings, multiple time-servers.

1. Introduction

The aim of timed-release encryption (TRE) is to sup-
port applications where encrypted confidential data must
not be decrypted by anyone, including the designated re-
ceipient(s), until a predetermined future time. TRE was
originally introduced in [19], and further studied in [25].The
TRE problem arises in many emerging applications with
significant impact to daily personal and business activity,
such as electronic voting, which requires delayed opening
of votes [24]; sealed-bid auctions, where bids must stay
sealed until the bidding period is over [25]; and Internet-
based contests where participants must not access the chal-
lenge problem before the contest starts [3]. Other examples
include contract signing, where two or more suspicious par-
ties need to exchange signatures on a contract [9], future
release of documents (e.g., memoirs, wills, press releases)
[25], delayed release of escrowed keys [2], and online gam-
bling and lotteries [7, 8].

Existing approaches to TRE are based upon the use of
either a time-lock puzzle (TLP) or a so-called trusted-agent
(TA). The former method was initially proposed by [20]
for protecting communications against passive adversaries.
Later, [25] extended this technique to provide TRE. Briefly,
the TLP approach consists of transforming a secret mes-
sage in such a way that any serial or parallel machine must
spend a significant amount of time solving a computational
problem (puzzle) in order to reconstitute the message. Such
techniques [25, 18, 14], do not require a trusted third-party,
but they put immense computational overhead on the re-
ceiver, who must perform non-stop, non-parallelizable com-
putation to retrieve a time-encrypted message. Except from
“tying up” the receiver’s CPU, TLP techniques cannot guar-
antee a precise release time because they depend on the
computational power of the receiver’s machine, and on the
time at which the decryption process is started; thus they
are impractical for many real-life scenarios.

To overcome the problems of TLPs, TA approaches
make use of a so-called time-server who provides a com-
mon and absolute time reference to users. In these server-
based schemes, users need to retrieve a piece of informa-
tion (trapdoor) from the time-server(s), akin to a secret key
which is necessary (in conjunction with the user’s secret
key) for the decryption process. Using TAs, one can set
the decryption date with high precision. The tradeoff is
that some interaction between the server and the users is
required. In the early attempts at TRE [19, 25], the server
was actively involved in the encryption or the decryption
process and user-anonymity was compromised. The situa-
tion improved with [11], which proposed a scheme based
on a conditional oblivious transfer protocol [17], in which
anonymity was achieved for the sender only. The non-
pairing based scheme of [22] was the first to achieve server
passivity, meaning that the TA’s only role is to publish uni-
versal1 time-specific trapdoors (e.g., on a web page). That

1Here, universal means that a trapdoor is the same for all users who

Third International Symposium on Information Assurance and Security (IAS), 2007

0-7695-2876-7/07 $25.00 © 2007 IEEE
DOI 10.1109/IAS.2007.10

77

approach was based on the quadratic residue assumption
(QRA) and had a very high communication cost compared
to all of the elliptic curve (EC)-based protocols examined
here.

Since the early work on TA-based TRE, researchers
have focused on minimizing server-user interaction, to en-
sure scalability and user-anonymity. New and innovative
TRE techniques appeared especially after the introduction
of Identity-Based Encryption (IBE) [5]. The latter used
elliptic curve cryptography (ECC) and the efficient imple-
mentation of bilinear pairings on ECs, leading to a series
of important developments. Here, we review some of the
best-known and most efficient protocols.

Some of the newer pairing-based schemes allow a user to
recover past time-specific trapdoors from the currently pub-
lished one. Specifically, the schemes of [4] and [23] use the
tree-like structure of [6] backwards, to construct previous
trapdoors, while [8] uses an inverted hash chain, similarly
to the S/Key system [15]. These approaches have a high
communication cost, while the root of the tree-like struc-
ture and the hash chain, respectively, correspond to the last
available trapdoor to be published, implying an upper bound
on the “lifetime” of the system.

Of particular interest in TA-based TRE is the problem
of eliminating (or at least reducing) the possibility of collu-
sion between the receiver and an unscrupulous time-server
who might allow early access to a message. An often-used
solution is to arrange matters so that the receiver is forced
to obtain trapdoors from more than one servers to decrypt a
message (more servers means that a larger number of enti-
ties must be corrupted in order for cheating to take place).
In that setting, Blake’s and Chan’s [3] scheme formed the
point of departure for a number of recent works, includ-
ing ours, being the first to provide efficient scalable, server-
passive, user-anonymous TRE with support for multiple
time-servers. The work in [16] described a similar, but com-
putationally less efficient scheme, that could also support
message pre-opening2. Improvements to [16] were later
proposed by [10]. Also, [7] designed a user-anonymous
TRE protocol that could make use of pre-computations (i.e.,
some of the calculations required to run the protocol can be
performed off-line, prior to specifying a message or a re-
ceiver), and thus be faster than previous approaches. The
main disadvantage of that work was the high additional cost
when using multiple time-servers. See also [24] for an at-
tempt at authenticated TRE.

The contribution of this paper is to propose a server-
based TRE protocol which is inspired by [3] and which
makes significant improvements in computational and com-

decrypt messages released at the time instant for which the trapdoor was
intended.

2Pre-opening refers to the ability of a sender to “speed-up” the decryp-
tion process by sending a trapdoor key before the designated time at which
a message was scheduled to be opened.

munication cost, as well as scalability, over other published
TRE approaches. With respect to computational cost, our
modified protocol compares favorably to those mentioned
previously and has the lowest cost in the case of unknown
receivers. Its communication cost effectively combines the
best features offered in other TRE protocols, using both a
simple public key format and a small ciphertext space. Fi-
nally, under some conditions, the additional computational
cost required in settings with multiple time-servers is negli-
gible.

The remainder of this paper is structured as follows. In
Section 2 we describe a new TA-based TRE protocol. In
Section 3 we compare our protocol with [3] and with other
modern TRE approaches, in terms of computational effi-
ciency, communication cost and scalability.

2. Proposed Protocol

2.1. Preliminaries

We begin by fixing notation and by reviewing some re-
lated definitions and computational assumptions used in this
work. We will require an abelian, additive finite group, G1,
of prime order q, and an abelian multiplicative group, G2,
of the same order. For example, G1 may be the group of
points on an elliptic curve (EC). We will let P denote the
generator of G1 and t ∈ {0, 1}τ , τ ∈ N denote time. For
instance, t could indicate the τ -bit string representation of
a specific time instant (e.g., 09:30:00 AM August 29, 2007
GMT). Also, H1, H2 will be two secure hash functions,
with H1 : {0, 1}τ �→ G

∗
1, H2 : G

∗
2 �→ {0, 1}n. Finally,

e : G1 ×G1 �→ G2 will be a bilinear pairing.

Definition 1 Bilinear Pairings Let G1 be an additive
cyclic group of prime order q generated by P , and G2 be
a multiplicative cyclic group of the same order. A map
ê : G1 × G1 �→ G2 is called a bilinear pairing if it sat-
isfies the following properties:

• Bilinearity: ê(aP, bQ) = ê(bP, aQ) = ê(abP,Q) =
ê(P, abQ) = ê(P,Q)ab for all P,Q ∈ G1, a, b ∈ Z∗

q .

• Non-degeneracy: there exist P,Q ∈ G1 such that
ê(P,Q) �= 1.

• Efficiency: there exists an efficient algorithm to com-
pute the bilinear map.

We note that all pairing algorithms currently employed in
cryptography are based on ECs, and thus make use of
Millers algorithm [21]. Currently, admissible types of pair-
ings include the Weil and Tate pairings and their variants
[1, 13].

The security of our protocol is based on the assumed dif-
ficulty of the following problems:

78

Definition 2 Discrete Log Problem (DLP) in G1

Given P,Q ∈ G1, it is difficult to find an integer a ∈ Z∗
q

such that Q = aP .

Definition 3 Discrete Log Problem (DLP) in G2

Given g1, g2 ∈ G2, it is difficult to find an integer a ∈ Z∗
q

such that g2 = ga
1 .

Definition 4 Computational Diffie-Hellman Problem
(CDHP) in G1

Given P, aP, bP ∈ G1, for some unknowns a, b ∈ Z∗
q , it is

difficult to find abP ∈ G1.

Definition 5 Bilinear Diffie-Hellman Problem (BDHP)
Given P, aP, bP, cP ∈ G1, for some unknowns a, b, c ∈
Z∗

q , it is difficult to find ê(P,P)abc.

2.2. Proposed anonymous TRE

The proposed agent-based TRE scheme, termed New-
TRE, involves two types of entities: a time-server which
issues time-specific trapdoors with some pre-determined
frequency (e.g., every minute), and users which may act as
either senders or receivers. To send a message, m, that will
be decrypted at (or after) a pre-defined time t, the following
protocol is to be executed:

New-TRE.Setup:(run by the time-server) given a se-
curity parameter k, the setup algorithm:
1. Outputs a k-bit prime number q, two groups G1, G2 of
order q, an admissible bilinear map e : G1 ×G1 �→ G2 and
an arbitrary generator P ∈ G1.
2. Chooses the following cryptographic hash functions:
H1 : {0, 1}τ �→ G

∗
1, H2 : G

∗
2 �→ {0, 1}n. These functions

will be treated as random oracles when it comes to security
considerations.
3. Generates the time-server’s private key s ∈ R←−Z

∗
q and

the corresponding public key S = sP ∈ G
∗
1.

4. Chooses the message space to be m = {0, 1}n and the
ciphertext space to be C = G1 × {0, 1}n+τ .
The public parameters are params := {k, q, G1, G2, P , S,
ê, H1, H2, n, τ , m, C}.

New-TRE.ReleaseT: (run by the time-server) given a
time instant t ∈ {0, 1}τ and the server’s private key s ∈ Z

∗
q ,

it returns the time-specific trapdoor skT = sT ∈ G
∗
1,

where T = H1(t) ∈ G
∗
1. We note that the trapdoor is in

fact a time-server’s short signature (as this proposed in [4])
on that time, t, and is inherently self-authenticating. Thus,
there is no need for an additional server signature: a user
can simply check whether ê(S, T) ?=ê(P, skT).

New-TRE.KeyGen: (run by the receivers) given params,
it chooses a private key b ∈ Z

∗
q and produces receiver’s

public key B = bP ∈ G
∗
1.

New-TRE.Enc: (run by the senders) to encrypt
m ∈ {0, 1}n using the time information t ∈ {0, 1}τ ,
the receiver’s public key B and the server’s public key S,
the sender executes the following:
1. Choose r ∈ R←−Z

∗
q .

2. Compute T = H1(t) ∈ G
∗
1.

3. Compute Q = rT ∈ G
∗
1.

4. Compute K = ê(S,Q) = ê(sP, rT) = ê(P, T)rs ∈ G
∗
2.

5. Compute c1 = rB = rbP ∈ G
∗
1 and c2 = m ⊕H2(K)

∈ {0, 1}n, where ⊕ denotes the XOR function.
The ciphertext is C := 〈c1, c2, t〉.

New-TRE.Dec: (run by the receivers) given
C := 〈c1, c2, t〉, the trapdoor skT and his private key
b, the recipient computes:
1. R = b−1c1 = b−1brP = rP . R can also be pre-
computed (before the release time), and
2. the session key K = ê(R, skT) = ê(rP, sT) =
ê(P, T)rs ∈ G

∗
2.

3. He retrieves the message as m = H2(K)⊕ c2.

2.3. Sketch of Security Proof

The following sketch of proof is obtained by modifying
that in [3].

1. The server’s and receiver’s private keys are safe be-
cause it is difficult to find s or b given P and sP or bP ,
respectively (it is an instance of the DL problem).

2. The server’s key is also safe from an attacker who
tries to compute s from the sT that the server produces for
various times, ti. Rewriting sTi as wisP for some unknown
wi, the attacker is faced with the problem of computing s
from P, sP,w1sP,w2sP, ..., which is at least as difficult as
the DL problem.

3. It is difficult for the receiver to decrypt a cipher-
text without the release key, sT . To do so, he must com-
pute ê(P, T)rs from P, b, rbP, sP . By rewriting T = wP
for some unknown w, we see that computing ê(P, T)rs =
ê(P, P)wrs from b, wP, sP, rbP is at least as hard as the Bi-
linear Diffie-Hellman problem. If the receiver tries to find
sT from sTi, Ti �= T , then by rewriting T = wiTi the re-
ceiver has the problem of finding swiTi from Ti, wiTi, sTi),
which is equivalent to the Computational Diffie-Hellman
problem over a Gap Diffie-Hellman group. Thus, the re-
ceiver cannot decrypt a message before its release time un-
less he colludes with the time server.

4. A malicious server who wants to decrypt a message
must compute K = ê(P, T)rs from s, P, bP, rbP and T .
As s is known to the server, the problem can be transformed
into finding Ks−1

= ê(P, T)r. The last problem could be
solved if one of r, rP or rT were known. However, the

79

only available quantity that “embeds” r is rbP . Using rbP ,
the malicious server cannot extract the value of r. This is
because if we assume that Q = bP (b is unknown), then the
problem of finding r from rQ is an instance of the DLP in
G1. Also, the problem of finding rP from bP and rbP is
equivalent to the CDHP in G1. Moreover, the problem of
finding rT from rQ, where Q = bP (r, b unknown) is at
least as difficult as breaking the short signature scheme of
[4]. Finally, the malicious server could try to compute the
pairing ê(rbP, T) = ê(P, T)rb but he then needs to solve
the DLP in G2 in order to produce K.

The security of the protocol can also be further strength-
ened, to cover chosen time and ciphertext attacks [7], by
applying the transformation of [12] as modified in [7] to ac-
count for, most importantly, the use of time as a parameter
in the protocol.

3. Comparisons

We go on to compare New-TRE with four of the best-
known, best-performing approaches to non-authenticated,
non-interactive server-based anonymous TRE. These are
the BC-TRE [3], HYL-TRE [16], DT-TRE [10], and CLQ-
TRE 3 [7] protocols.

3.1. Computational Efficiency

For the purposes of comparing the computational effi-
ciency of New-TRE with that of the four protocols men-
tioned previously, we will ignore operations whose cost is
negligible compared to that of a scalar multiplication in G1.
These include generating random numbers, integer multi-
plication, plain hashes and point additions in G1. Also, be-
cause some of the protocols enable pre-computations under
certain circumstances, we distinguish between three cases
of anonymous TRE: i) typical message transmission to un-
known receivers, ii) transmission to known receivers (in
which case there is no need to verify their public keys), and
iii) TRE with multiple time-servers.

Table 1 lists the cost (in msec) of the basic operations re-
quired to run the protocol(s), taken from [24]. The results
were obtained using the MIRACL open-source library [26]
on a PIII 977MHZ with 512Mb of RAM, assuming a sub-
group of order q in a supersingular EC E over Fp, where
p is a 512 bit prime and q is a 160 bit prime. The pairing
value belongs to a finite field of 1024 bits.

For New-TRE, the encryption phase requires 1 Mtp to
compute T , 1 Sm for Q, 1 Pa for K and finally another
1 Sm for c1, totaling 41.01 msec. As for the decryption
phase, the recipient must perform 1 Sm operation to calcu-
late the point value R and 1 Pa to produce K, thus the total

3Unlike this work, [7] uses multiplicative notation for both groups G1

and G2.

Table 1. Cost of basic operations (in msec)

Operation Notation Cost

Bilinear Pairing Pa 31.71
Parallel Scalar Multiplication in G1 PSm 4.3
Scalar Multiplication in G1 Sm 3.44
Exponentiation in G2 Ex 3.93
Map-To-Point Mtp 2.42
Inversion in Zq Inv 1.81

decryption cost is approximately 35.15 msec. We point out
that the cost of running New-TRE is not dependent on any
a-priori knowledge of the receiver’s public key.

Tables 2 and 3 summarize our comparisons of computa-
tional cost for the cases of unknown and known receivers,
respectively, taking advantage of pre-computations, when
possible. For example, the constant value ê(P, P) in CLQ-
TRE and the value b−1 in New-TRE, respectively, are con-
sidered to be pre-computed and thus do not figure into the
total cost for those protocols. Because not all protocols pro-
vide for message pre-opening, we assumed that no such ac-
tivity take place, for the sake of being able to make fair
comparisons. For all protocols, we used the bilinearity of
pairings to replace the more expensive exponentiation in G2

with scalar multiplication in G1, whenever possible, e.g.,
ê(P,Q)a = ê(aP,Q).

From Table 2, we observe that our approach is the fastest
method in the general case of sending a message to un-
known receivers, while CLQ-TRE has the lowest compu-
tational cost in the special case of known receivers, be-
cause of the pre-computation of ê(P, P) (the sender com-
putes no pairings “on-line”). Moreover, BC-TRE, HYL-
TRE and New-TRE have the lowest complexity in the de-
cryption phase. BC-TRE and CLQ-TRE are the only pro-
tocols whose cost depends on knowledge of the receiver’s
public key. This is because they use a slightly different
public key format, with users’ public keys consisting of
two points in G1 instead of just one, as in the conventional
cryptographic schemes (Diffie-Hellman keys). The impli-
cation for BC-TRE and CLQ-TRE is that on the first use of
any public key (for transmitting to an unknown receiver) the
sender must verify the validity of this two-point public key,
to ensure that it is properly formed and that the recipient
will be able to decrypt the message. Such verification is not
needed in the other three schemes.4

4When comparing the cost of implementations of the above schemes,
we did not include the cost of a group membership test for the public keys.
If that were taken into account, [3, 7] would require some additional check-
ing because of the use of “two-point” public keys.

80

Table 2. Computational cost comparison sending to unknown receivers (in msec)

Protocol Encryption Decryption Total

BC-TRE 3Pa + 2Sm + 1Mtp = 104.43 1Pa + 1Sm = 35.15 139.58
HYL-TRE 1Pa + 1PSm + 2Sm + 1Mtp = 45.31 2Pa + 1Sm = 66.86 112.17
DT-TRE 1Pa + 3Sm + 1Mtp = 44.45 1Pa + 1Sm = 35.15 79.6
CLQ-TRE 2Pa + 1PSm + 1Ex = 71.65 1Pa + 1PSm + 1Ex = 39.94 111.59
New-TRE 1Pa + 2Sm + 1Mtp = 41.01 1Pa + 1Sm = 35.15 76.16

Table 3. Computational cost comparison sending to known receivers (in msec)

Protocols Encryption Decryption Total

BC-TRE 1Pa + 2Sm + 1Mtp = 41.01 1Pa + 1Sm = 35.15 76.16
HYL-TRE 1Pa + 1PSm + 2Sm + 1Mtp = 45.31 2Pa + 1Sm = 66.86 112.17
DT-TRE 1Pa + 3Sm + 1Mtp = 44.45 1Pa + 1Sm = 35.15 79.6
CLQ-TRE 1PSm + 1Ex = 8.23 1Pa + 1PSm + 1Ex = 39.94 48.17
New-TRE 1Pa + 2Sm + 1Mtp = 41.01 1Pa + 1Sm = 35.15 76.16

3.2. Communication Cost

The protocols’ communication complexity depends on
the bit-length of the transmitted public keys and the cipher-
text space. As mentioned previously, in BC-TRE and CLQ-
TRE the users’ public keys consist of two EC points, while
the rest use a single Diffie-Hellman public key. Conse-
quently, if the recipient is an unknown entity, the cost to
download the recipient’s public key from a public database
for BC-TRE and CLQ-TRE is twice that of the HYL-TRE,
DT-TRE and New-TRE schemes.

As for the ciphertext space, all of the TRE schemes un-
der comparison require an EC point and a �-bit string to be
transmitted; the HYL-TRE scheme requires an additional
EC point and pairing value, and the DT-TRE requires an
additional EC point. The value of � is the same for all
schemes; it is either � = n + τ or � = n + τ + q, depend-
ing on whether or not the Fujisaki-Okamoto transformation
[12] is applied, where n is the length of the cleartext mes-
sage, q is the security parameter (e.g., 160-bits) and τ is
the bit-length of the string used to represents a time instant.
We emphasize that in order to provide sufficient security,
an EC point must be represented using at least 160 bits; a
pairing value should be alloted approximately 1024 bits. To
summarize, New-TRE has the lowest communication cost,
while HYL-TRE has the highest one, in large part because
of the pairing value being transmitted.

3.3. Encrypting using multiple time-servers

New-TRE can be easily modified to support multiple
time servers, similarly to the BC-TRE scheme. Suppose
that there are N time-servers, each using a secret key si and

a generator Pi ∈ G1, where i = 1..N . Then, their cor-
responding server public keys are Pi, Si = siPi, and the
trapdoors are of the form siT (where T = H1(t)).

In the special case where all servers use the same gen-
erator Pi = P (this could well be the case if, for example,
the time-servers follow NIST recommendations for chosen
ECs and generators), the additional computational burden
for New-TRE is negligible. To encrypt a message m using
i multiple servers, a sender follows the steps of the basic
single-server protocol, but computes K = ê(

∑
Si, Q) =

ê(P, T)r
∑

si using the common generator, P . On the re-
ceiver side, once the trapdoors (siT) are published, the re-
ceiver can also compute K = (R,

∑
siT) = ê(P, T)r

∑
si .

Thus, when all time-servers use the same generator,
New-TRE is much faster than BC-TRE (the only proto-
col of those surveyed that explicitly handles multiple time-
servers): with N servers, the additional computation re-
quired under New-TRE is only N−1 scalar additions in G1.
There is no additional communication cost, besides the un-
avoidable retrieval of the servers’ trapdoors. With BC-TRE
on the other hand, a receiver’s public key includes N − 1
additional EC points due to that protocol’s more complex
public key format. An examination of that protocol reveals
that a sender must perform an additional 2N pairings to ver-
ify the authenticity of each of an unknown receiver’s public
keys, and an additional N − 1 scalar multiplications (these
correspond to EC points which are appended to the cipher-
text). The receiver must perform N − 1 additional pairings
to compute the decryption key.

If the time-servers have chosen different generators, a
New-TRE receiver would need to send public keys of the
form aPi, for each different Pi, i = 1..N . In that case the
additional computational and communication cost of New-

81

TRE are the same as those of BC-TRE.
It is important to note that in BC-TRE, it is the receiver

who in effect chooses the time-servers, because the time-
server’s public key is used to create the receiver’s public
key. In our approach, a sender can use any time-server of his
choice, and any number of them, without restrictions, which
may increase the level of trust in transactions undertaken via
New-TRE.

4. Conclusions

We have presented a new anonymous TRE protocol, in-
spired by that in [3], and compared it to other well-known
TRE schemes from the recent literature. Ours has the low-
est computational cost when sending data to unknown re-
ceivers, and is as good as [16] and [3] in decryption cost for
both known and unknown receivers. In terms of communi-
cation cost, our protocol has an advantage overall, because
it combines the best features of [16, 10] (simple public-key
format) and [3, 7] (small ciphertext space) together in one
approach. Our approach offers excellent scalability in mul-
tiple time-server settings. In particular, if all time-servers
employ the same group generator, the additional cost is neg-
ligible (one scalar addition per additional server). Exten-
sions of our protocol to include message pre-opening ca-
pabilities and release time confidentiality are the subject of
ongoing work.

References

[1] P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient al-
gorithms for pairing-based cryptosystems. In Advances in
Cryptology CRYPTO 2002, LNCS 2442, pp. 354 - 368.
Springer-Verlag, 2004.

[2] M. Bellare and S. Goldwasser. Encapsulated key-escrow. In
Technical Report MIT/LCS/TR-688, 1996.

[3] I. F. Blake and A. C.-F. Chan. Scalable, server-passive, user-
anonymous timed release cryptography. In 25th IEEE Int’l.
Conf. on Distributed Computing Systems, pp. 504-513. IEEE
Computer Society, 2005.

[4] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity
based encryption with constant size ciphertext. In Advances
in Cryptology EUROCRYPT 2005, LNCS 3494, pp. 440-
456. Springer-Verlag, 2005.

[5] D. Boneh and M. Franklin. Identity based encryption from
the weil pairing. In Advances in Cryptology - CRYPTO ’01,
LNCS 2139, pp. 213-229. Springer-Verlag, 2000.

[6] R. Canetti, S. Halevi, and J. Katz. A forward secure public
key encryption scheme. In Advances in Cryptology - EU-
ROCRYPT ’03, LNCS 2656, pp. 254-271. Springer-Verlag,
2003.

[7] J. Cathalo, B. Libert, and J.-J. Quisquater. Efficient and
non-interactive timed-release encryption. In Intl. Conf. on
Information and Communications Security, LNCS 3783, pp.
291-303. Springer-Verlag, 2005.

[8] K. Chalkias and G. Stephanides. Timed release cryptogra-
phy from bilinear pairings using hash chains. In 10th IFIP
CMS, pp. 130-140. Springer-Verlag, 2006.

[9] I. Damgard. Practical and provably secure release of a se-
cret and exchange of signatures. In Advances in Cryptol-
ogy - EUROCRYPT ’93, LNCS 765, pp. 200-217. Springer-
Verlag, 1994.

[10] A. W. Dent and Q. Tang. Revisiting the security model for
timed-release public-key encryption with pre-open capabil-
ity. In Cryptology ePrint Archive: Report 2006/306, 2006.

[11] G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan. Con-
ditional oblivious transfer and timed-release encryption. In
Advances in Cryptology - EUROCRYPT ’99, LNCS 1592,
pp. 74-89. Springer-Verlag, 1999.

[12] E. Fujisaki and T. Okamoto. How to enhance the security of
public-key encryption at minimum cost. In PKC ’99, LNCS
1560, pp. 53-68. Springer-Verlag, 1999.

[13] S. Galbraith, H. K., and S. D. Implementing the Tate pairing.
In Algorithmic Number Theory Symposium ANTS V, LNCS
2369, pp. 324 - 337. Springer-Verlag, 2002.

[14] J. Garay and M. Jakobsson. Timed release of standard digital
signatures. In Financial Cryptography ’02, LNCS 2357, pp.
168-182. Springer-Verlag, 2002.

[15] N. Haller. The s/key one-time password system. In
http://www.rfc-archive.org/getrfc.php?rfc=1760, 2005.

[16] Y. H. Hwang, D. H. Yum, and P. J. Lee. Timed-release en-
cryption with pre-open capability and its application to cer-
tified e-mail system. In Information Security Conf., LNCS
3650, pp. 344-358. Springer-Verlag, 2005.

[17] J. Killian. Basing cryptography on oblivious transfer. In
Proc. of STOC, pp. 20-31, 1988.

[18] W. Mao. Timed release cryptography. In Selected Areas
in Cryptography 2001, LNCS 2259, pp. 342-357. Springer-
Verlag, 2001.

[19] T. May. Timed-release crypto. In Manuscript,
http://www.hks.net/cpunks/cpunks-0/1460.html, 1993.

[20] R. C. Merkle. Secure communications over insecure chan-
nels. In Communications of ACM, 21(4), pp. 294-299, 1978.

[21] V. S. Miller. The weil pairing, and its efficient calculation.
In Journal of Cryptology, volume 17, pp. 235 - 261, 2004.

[22] M. C. Mont, K. Harrison, and M. Sadler. The hp time vault
service: Innovating the way confidential information is dis-
closed at the right time. In Intl. World Wide Web Conf., pp.
160-169. ACM Press, 2003.

[23] D. Nali, C. Adams, and A. Miri. Time-based release of con-
fidential information in hierarchical settings. In Information
Security, LNCS 3650, pp. 29-43. Springer-Verlag, 2005.

[24] I. Osipkov, Y. Kim, and J.-H. Cheon. Timed-
release public key based authenticated encryption. In
http://eprint.iacr.org/2004/231, 2004.

[25] R. Rivest, A. L. Shamir, and D. A. Wagner. Time-lock puz-
zles and timed-release crypto. In MIT Laboratory for Com-
puter Science Technical Report 684. Massachusetts Institute
of Technology, 1996.

[26] L. Shamus Software. Miracl - multiprecision integer and
rational arithmetic c/c++ library. In http://indigo.ie/ mscott,
2006.

82

