
An Implementation Infrastructure for Server-Passive Timed-Release
Cryptography

Konstantinos Chalkias, Foteini Baldimtsi, Dimitrios Hristu-Varsakelis, and George Stephanides
Computational Systems and Software Engineering Laboratory

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
{chalkias, foteini}@java.uom.gr, {dcv, steph}@uom.gr

Abstract

As online transactions become increasingly practical, a
broad range of industrial and e-government applications
have emerged which depend on time-based protection of
confidential data. Despite theoretical progress in timed-
release cryptography (TRC), there is still no implementa-
tion infrastructure that takes advantage of the latest TRC
algorithms. The purpose of this paper is to propose such
an infrastructure for pairing-based timed-release cryptog-
raphy (PB-TRC) systems. Our model uses key generation
centers (KGCs) which publish decryption keys periodically,
and satisfies the security requirements of modern third-
party based TRC schemes. Our approach combines the best
features of existing models into a generic and complete in-
frastructure which is to support TRC. It is also “lighter”
in terms of complexity and communication, and is as effec-
tive (in terms of security and related properties) as the TRC
protocol it is used with.
Key words: timed-release cryptography, infrastructure,
passive server, key distribution center, bilinear pairings

1 Introduction

The aim of timed-release encryption (TRE) is to encrypt a
confidential message so that the resulting ciphertext cannot
be decrypted by anyone, until a specific time in the future.
Early work on this problem includes [15] and [18]. TRE
is useful, and oftentimes necessary, in many real world
applications such as e-voting [18], sealed-bid auctions
[17], e-lotteries [8] and e-contests [2]. Recently, the rapid
development of identity based encryption [5], motivated
newer and more innovative TRE techniques. The main
advantage of modern TRE schemes is that they depend on a
fully passive time-server, whose sole role is to broadcast, at
the right time, a piece of information (called a “trapdoor”)
that is required for decrypting time-encrypted messages.

Although by now there exist a significant number of TRE
protocols, each with its own desirable features, there has
been little work on the infrastructure(s) which will be re-
quired in order to implement the theoretical work. One ex-
ception we are aware of is [10] whose approach is compu-
tationally expensive and requires complex certificate man-
agement and time-trapdoor distribution. In [10], the time-
server is actively involved in the sender-receiver communi-
cation process, so that sender anonymity is compromised.
Furthermore, there is no support for multiple time-servers;
the latter feature can be used to increase the security level
by making it difficult for an “impatient” receiver to collude
with the (single) time server in order to gain early access
to a message. The main reason for these disadvantages is
that [10] is based on the public key approach of [18]; a
sender encrypts a timed-release message using a public key
whose corresponding private part will be broadcast by a TA
at the designated time. Another approach, named the “HP
Time Vault Service” [16] does not include important ser-
vices such as message pre-opening, multiple time-servers,
support for PB-TRE algorithms, and the ability to choose
between anonymous versus authenticated encryption.

This paper’s contribution is to describe a “complete” and
generic infrastructure over which TRE schemes can be im-
plemented, and which can support a variety of PB-TRE pro-
tocols, including those which are most efficient and provide
important security and privacy-related properties, such as
those mentioned in the previous discussion. We view this
work is an essential step towards putting PB-TRE schemes
to practical use. The remainder of this paper is structured as
follows. In Section 2 we give a list of security-related prop-
erties that are provided by newer TRE protocols and thus
should be supported by any prospective TRE infrastructure.
Section 3 gives a brief description of how modern TRE pro-
tocols work and reviews the current state of the art. Section
4 discusses the proposed infrastructure and compares it with
the other two existing models [10, 16]. For a fuller version
of this work, see [7].

The Fourth International Conference on Information Assurance and Security

978-0-7695-3324-7/08 $25.00 © 2008 IEEE

DOI 10.1109/IAS.2008.49

89

Authorized licensed use limited to: University of Macedonia. Downloaded on January 7, 2009 at 06:31 from IEEE Xplore. Restrictions apply.

2 Security Requirements of Modern TRE

Before discussing an effective infrastructure for PB-TRE,
we first review the security requirements that must be sup-
ported (assuming that they are also fulfilled by the encryp-
tion protocol to be implemented). By studying real-world
applications which demand TRC, the following have come
to be considered more or less essential.

• Access to the content of the confidential message must
be infeasible until the specified release time. The de-
cryption key should then be available only to the au-
thorized entities.
• Anonymity: the model should provide both sender and

receiver anonymity, if desired.
• Authentication and integrity: it must be possible to

verify the authenticity and the integrity of the released
message.
• Non-repudiation: after the release of the message, the

receiver should not be able to deny knowledge of the
message content.
• Multiple time-server support: it should be possible to

support the use of multiple time-servers when encrypt-
ing/decrypting, in order to eliminate, or at least reduce,
the possibility of collusion between the receiver and an
unscrupulous time-server.
• Pre-open capability: a sender should have the option to

allow early decryption of a message by sending to the
receiver a trapdoor key (different from the one to be
issued by the time-server) before the designated time.
• Confidentiality of release time: there should be an op-

tion to “hide” the disclosure time.
• Public part: an application may require that part of

the message be public, i.e., viewable by anyone at any
time.

Each of the PB-TRE protocols proposed in the literature has
its own strengths and weaknesses achieving some combina-
tion of these properties. The infrastructure proposed in this
paper may be used with any existing PB-TRE protocol.

3 How PB-TRE works
When Boneh and Franklin [5] announced their work on
pairing-based IBE, they mentioned TRE as one of its possi-
ble applications. In IBE there is no need for public keys
to be transmitted; thus, any alphanumeric sequence that
uniquely identifies a user (e.g., their e-mail address) can be
used as an encryption key. Modern PB-TRE protocols take
advantage of this method, to ensure server-passiveness and
sender anonymity. To illustrate the main idea, assume that
Alice wants to broadcast a timed-release encrypted mes-
sage, with a desired disclosure time of December, 1st 2008,
at 12:00 noon (GMT). Alice computes the IBE public key

that corresponds to this date/time (represented as a string)
and encrypts the message with this key. Unlike “traditional”
IBE, this public key does not correspond to a person, but
rather to a time instant. A trusted time-server (henceforth
called a Key Generation Center - KGC) is then responsi-
ble for constructing the matching private key needed to de-
crypt the message. In order for this to work, the KGC must
be equipped with an accurate clock, and must publish the
time-related private keys (trapdoors) reliably at the intended
times (e.g., at regular intervals), to be downloaded by any-
one. Thus, in PB-TRE the sender does not interact at all
with the KGC, while the KGC’s sole responsibility is to
periodically publish trapdoors. If message pre-opening is
needed then the protocol is structured so that the sender can
provide a “release key” to the receiver at any time; the lat-
ter acts as a secondary trapdoor and permits the receiver to
decrypt immediately.

PB-TRE schemes can be classified in two categories with
respect to the construction of the time-specific trapdoors:
i) those using the pairing-based short signature scheme of
Boneh and Boyen [3], termed BB, and ii) those using the
approach of Boneh, Lynn and Shacham [4], termed BLS.
The main reason for selecting BB/BLS signatures to pro-
duce TRE trapdoors is the fact that their length is half the
size of ordinary signatures, such as DSA. Because of this,
BB and BLS signatures are suitable for constrained chan-
nels; the KGC only publishes a small amount of data, reduc-
ing Denial of Service (DoS) attacks. We note that trapdoors
are in fact self-signed (as instances of BB or BLS) so that a
KGC does not need to attach any other kind of signature.

4 Proposed Infrastructure

The proposed PB-TRE infrastructure is illustrated in Fig-
ure 1 and consists of four main components:
Network Time Protocol (NTP) Servers: their role is to
enable precise control over the release time of messages by
providing an absolute time reference. NTP servers use the
well-known NTP protocol to achieve clock synchronization
between the KGCs, the key distribution centers (KDCs, de-
tailed below) and the users. All publicly available NTP
servers [11] use Coordinated Universal Time (UTC) as their
time reference. The GPS clock can be used to keep the NTP
servers aligned with UTC.

In our model we allow for multiple NTP servers. We
do this in order to ensure robust synchronization by provid-
ing more than one time references. Thus, even if an NTP
server suffers a temporary loss of accuracy, others will be
available. Moreover, each user will have the possibility of
choosing the closest NTP server to interact with, reducing
transmission delays.

In Figure 1, NTP servers are connected with KGCs by
a dashed line. This is to indicate that the communication

90

Authorized licensed use limited to: University of Macedonia. Downloaded on January 7, 2009 at 06:31 from IEEE Xplore. Restrictions apply.

between them is neither continuous nor obligatory, as the
KGCs could be equipped with their own clock and only pe-
riodically contact NTPs for synchronization. On the other
hand, receivers must contact NTPs to ensure synchroniza-
tion before trying to obtain a trapdoor. If an adversary tries
to attack this part of our model by delaying, for example,
the packets sent to/from the NTPs, he could cause a de-
lay of some seconds in the worst case (a very long delay
would raise suspicion on the part of a user, or may mean
that an NTP is unreachable). In that case, the decryption
of a message would also be subject to a small delay. To
protect against attackers who intercept messages from the
NTP to the user and change their contents (to throw off a
user’s clock) some type of secure NTP must be developed,
although the problem is somewhat reduced if the user polls
multiple NTPs (an attacker would have to tamper with the
majority of NTPs in that case).
KGCs: a Key Generation Center, also known as a time-
server, periodically releases the time trapdoors necessary
for decryption. During the setup phase of a TRE proto-
col, the KGC generates a public/private key pair (spub, spr).
The private key must be stored and secured locally, as it is
used for the generation of the trapdoors. KGCs are not in-
volved in the encryption or decryption process; their sole
role is to issue trapdoors and send them to the KDCs for
distribution. The frequency at which that is done can be
specified during the initialization of the KGC, and may be
different for each KGC.

Providing for multiple KGCs in our model increases se-
curity. By forcing a user to obtain trapdoors from more than
one servers to decrypt a message we eliminate the possi-
bility of collusion between the receiver and the time-server
because more than one (in some cases all) KGCs must be
corrupted in order for cheating to take place. Differences
in frequency of trapdoor release is another reason for need-
ing multiple time-servers: a sender can choose the server
that provides the desired accuracy with respect to decryp-
tion time. It is also important to note that each trapdoor is
in fact self-authenticated and thus the system is protected
against KGC duplication.
KDCs: Key Distribution Centers are mainly involved with
the publication of the trapdoors issued by the KGCs. Users
apply to the KDCs in order to obtain the appropriate trap-
door for decryption of their message, either via traditional
browsers or with programming methods, by querying a
KDC with a date, time, and the KGC name. The KDC re-
turns the corresponding trapdoor only if it has been gener-
ated by the time-server, otherwise returns a message indi-
cating that the trapdoor has not been published yet. The
KDCs also store information on the KGCs release fre-
quency so that senders are to choose which time-server(s)
to use. The implementation of KDCs requires a database
system to store past trapdoors. This information should be

stored in multiple KDCs in order to avoid denial of service
attacks or collapse from high user demand, and to ensure
data integrity if the database of a KDC is destroyed.

We propose the existence of two categories of KDCs,
one to storing current or relatively recent trapdoors, and an-
other for storing past ones. This way, users who want to ob-
tain a trapdoor issued in the distant past do not increase the
communication load of KDCs which publish current time
trapdoors.
Ri and Si: by R1,...,N and S1,...,N we indicate the users,
receivers and senders, respectively, involved in our model.
Receivers are able to communicate with NTP servers (to
keep synchronized) and with KDCs (to obtain trapdoors).
On the other hand, senders do not need to contact an NTP
server; they only communicate with the KDCs in order to
obtain information on the KGCs frequency of trapdoor re-
lease, so that they may choose the KGCs that best match
their desired decryption time.

We observe that there is a two-type connection between a
sender and a receiver. The one shown with a single solid line
indicates a sender transmitting a TRE encrypted message
to one or more receivers. Besides that, there is also a one-
way connection between the two types of entities, indicating
support for pre-opening, i.e., transmission of the release key
when a sender decides to reveal his message to the receiver
before the pre-determined time.

Figure 1. Proposed TRE infrastructure

4.1 Security and Other Properties

As we have previously stated, our model could be imple-
mented using any of the PB-TRE protocols in the litera-
ture. Therefore, the choice of protocol used will largely de-
termine which security properties hold in any given imple-
mentation. We distinguish between two main categories of
properties: those attributable to the TRE protocol of choice
and those which are “bound” to the infrastructure, keep-
ing in mind that some properties may depend on both ob-
jects. Based on the choice of PB-TRE protocol, one could

91

Authorized licensed use limited to: University of Macedonia. Downloaded on January 7, 2009 at 06:31 from IEEE Xplore. Restrictions apply.

guarantee various combinations of anonymity, authentica-
tion and message integrity, non-repudiation, pre-open capa-
bility, multiple KGCs support, and confidentiality of release
time. These properties have been proved to hold by the au-
thors of the protocol(s) in each case.

Besides these, the construction of our model ensures ab-
solute and accurate disclosure time because the KGCs are
designed to make infeasible the generation of decryption
keys for future time instants. The role of NTP servers is
essential in this context, because they ensure synchroniza-
tion of the KGCs, reducing the possibility of a corrupt KGC
with a counterfeit clock. Message pre-opening and multiple
KGC support are also made available, if supported by the
TRE protocol used in the implementation. Finally, the op-
tion to keep part of the message public is supported in our
model by slightly altering the encryption algorithm of the
TRE protocol to be used, so as to leave a portion of the
message unencrypted. We stress the importance of incor-
porating this feature directly into the protocol used, and not
through an external mechanism in the infrastructure. If the
latter choice is made (e.g., [10]), the system becomes rather
complex due to the requirement for a mechanism that pro-
vides a proof of “relation” between the ciphertext and the
public part. To incorporating a “public part” feature into
an existing TRE protocol, the following must take place. In
addition to the encrypted message, the sender also transmits
the hash of the public part of the message to the receiver.
To eliminate the possibility of the message being altered
en-route, that hash value should be encrypted with a secret
value which the receiver can compute immediately, with-
out waiting for any trapdoor. Such a secret key can often
be the result of precomputations that the receiver performs
while waiting for the message’s release time. Moreover, in
cases where the Fujisaki-Okamoto transformation is used,
the value of the public part can be used as an input on the
required hash functions.

4.2 Comparisons with Existing TRE In-
frastructure Models

There are two proposed TRE infrastructures found in the
literature. The first [10] is based on the TRE scheme of
[18]1. Although their approach is well-structured and prac-
tical, it leaves some work to be done in order to be used in
emerging e-business and e-government applications.One of
the drawbacks is the use of an external encryption module
(EM) that encrypts the message on behalf of the sender. Its
main purpose is to satisfy a special requirement according
to which not even the sender should be able to decrypt the
time-encrypted message. However, as the authors of [10]

1We remind the reader that unlike PB-TREs, in [18] the sender has
to acquire a public key (from a key distribution service or from the time-
server itself) that corresponds to the desired release time.

also recognize, a sender already knows the message content
and does not need to decrypt it, making an EM unnecessary.
Moreover, the possibility of malicious EMs in [10] must be
examined further, because even though multiple EMs are to
be used, parts of the message may still be revealed. This
is because each EM deals with a part of the clear message
without the use of any padding, so that if one EM is com-
promised, an attacker is able to obtain the corresponding
part of the cleartext.

In [10], senders must request the appropriate time-
related public key from the KGC before encrypting a mes-
sage, so that they are no longer anonymous. It should be
emphasized that this happens as a result of the infrastruc-
ture, in spite of the fact that the protocol to be implemented
may provide anonymity. Senders’ identities are known to
the EMs as well. Furthermore, the infrastructure in [10]
does not support some of the desired functionality, such
as message pre-opening, confidentiality of release time and
multiple time-server support. Finally, we note that [10] of-
fers a sender the ability to “destroy” a time-encrypted docu-
ment by asking the KGC to cancel the publication of a spe-
cific trapdoor. This feature may sometimes be useful (e.g.,
when a sender regrets their decision to send a TRE message)
but may prove troublesome in a setting where trapdoors are
universal (as in modern PB-TRE): if a trapdoor correspond-
ing to a specific release time is somehow “cancelled”, this
would prevent the decryption of all messages with that same
release time.

A second TRE infrastructure proposed in [16] sets up a
server-passive TRE model by implementing their algorithm
for QRA-based TRE. The authors have created a service
in which identity based TRE (IB-TRE) is used. Their in-
frastructure model can be viewed as a simplified version
of ours. A disadvantage of [16] is that the implementa-
tion infrastructure proposed therein is “tied” to the partic-
ular QRA-based TRE protocol described in the same work.
QRA-based TRE has a high communication cost compared
to pairing-based protocols. Also, there are no other QRA-
based TRE protocols besides [16], so that corresponding
infrastructure is not as generic or as scalable as the one
described here. Finally, there is no provision for message
pre-opening, confidentiality of release time, message pub-
lic parts and multiple KGCs, and synchronization issues are
not addressed.

In comparison, the infrastructure proposed here can be
used with any of the existing PB-TRE algorithms. In each
case, the system “inherits” the security features of the proto-
col that is being implemented, and can thus support a variety
of newer security features and services. This makes our ap-
proach generic, flexible, and able to fulfill the requirements
of the majority of e-applications that require delayed release
of messages.

92

Authorized licensed use limited to: University of Macedonia. Downloaded on January 7, 2009 at 06:31 from IEEE Xplore. Restrictions apply.

4.3 Implementation

In the following we give an example of a typical TRE trans-
action between two users, Alice and Bob. Let us assume
that Alice wants to time-encrypt a confidential document to
Bob. At first she decides on the exact release time and date,
for instance, January, 1st 2008, 20:00 (GMT). The string
representation of this date might be “GMT200801012000”.
Now, Alice must choose from a variety of PB-TRE proto-
cols, depending on her requirements. Our model is indepen-
dent of the PKI used, and supports any TRE scheme that
makes use of BB or BLS trapdoor-types; it can easily op-
erate with conventional Diffie-Hellman-like PKIs, but also
with identity based [5] and certificateless [1] infrastructures.
For convenience, we will assume that both users use “tradi-
tional” public keys, so that Alice must know Bob’s digital
certificate2. Alice could then choose from among the fol-
lowing non-IBE TRE protocols: [2, 14, 12, 13, 6, 9].

Assuming that Alice wants to send a user-anonymous
message using multiple (say, three) KGCs for increased se-
curity, the multi-KGC version of [13] could be used. It is
important that Alice be sure that at the designated time the
selected KGCs will indeed publish time-trapdoors. To en-
able her to do this, before a KGC becomes active it must
sign a document containing information about the first time-
trapdoor to be published, the time interval between publica-
tion of each trapdoor and the trapdoor types that are pub-
lished (BB, BLS or both). For instance, let us assume that
a KGC started to issue ’BB and BLS’-based trapdoors at
January, 1st 2007, 12:00 noon (GMT), and that the period
between trapdoor publications is 30 minutes. This KGC
must initially sign the above information and publish this
signature to KDCs. We will call this signature a “Time Pol-
icy File” (TPF) (see Figure 2). The complete list of TPFs for
all KGCs will need to be downloaded once by a sender; then
an update check is needed (e.g., daily, weekly). KDCs will
then know when to expect time-trapdoors, while senders
will be able to determine which server will broadcast time-
trapdoors at the time of their choice (or as close to it as
possible).

Figure 2. Illustrating the contents of a TPF

Before encrypting the message, Alice selects (from the
TPF) three KGCs that will publish trapdoors on January,
1st 2008, 20:00 (GMT). A KGC Chooser (KC) application
can automate this procedure [7]. This software must take as

2If IBE was to be used, Alice would produce Bob’s public key only
using, for example, his e-mail address.

inputs the predetermined time instant, the TPF file, the de-
sired number of KGCs to be used, and the selected TRE al-
gorithm 3. The last input is necessary to determine the type
of trapdoor, “BB or BLS”-based, because not all servers are
required to publish both types. The algorithm “behind” the
KC repeatedly selects a KGC and checks whether it pub-
lishes the required trapdoor-type at the desired release time,
in which case the KGC will be used, until it finds the re-
quired number of KGCs.

After specifying the KGCs, Alice encrypts the message
using the selected TRE algorithm and then sends the mes-
sage to Bob. When Bob receives the time-encrypted mes-
sage, he must wait until the release time to obtain the corre-
sponding time-trapdoor and perform the decryption (if there
exists a public part he is able to read it immediately). Of
course, Bob should also synchronize his clock using the
NTP protocol.

At the release time, the synchronized KGCs broadcast
the corresponding time-trapdoors to the network of KDCs.
Because trapdoors are self-authenticated, a KDC first veri-
fies their validity before accepting them.

Figure 3. Interface for obtaining Trapdoors

After Bob has acquired the trapdoors from a KDC (see
Figure 3), he is able to decrypt the message. We note that
modern PB-TRE schemes are equipped with mechanisms
that validate message integrity and are secure against cho-
sen time and plaintext attacks (CTPA) as well as chosen
time and ciphertext attacks (CTCA). The flexibility of the
proposed approach makes it an ideal system for various
applications. E-voting, sealed bid auctions, e-contests, e-
lotteries, e-cash and e-payments, key escrow, contract sign-
ing are included in this category.

5 Conclusions and Results

This work improves upon the TRE implementation infras-
tructures of [10, 16] by proposing a generic, flexible infras-
tructure which can support new security features and de-
sirable properties, inherited from the protocol of choice.
Because of the scope of the applications which require or
would benefit from TRE, any infrastructure must be suf-
ficiently scalable to provide advanced security including
user-anonymity and/or sender-authentication. Our model

3Additionally, the input may include a list of preferred KGCs.

93

Authorized licensed use limited to: University of Macedonia. Downloaded on January 7, 2009 at 06:31 from IEEE Xplore. Restrictions apply.

fullfils this requirement and can work with a variety of mod-
ern TRE schemes. As in [16, 10] our approach depends
on trusted authorities, called KGCs, who periodically is-
sue self-authenticated time-specific trapdoors required for
decryption. However, neither of the existing infrastructure
models addresses the possibility of multiple KGCs, and are
thus vulnerable to sender-KGC collusion. This reduces their
applicability in applications such as e-voting and blind auc-
tions, for example. To circumvent the problem of collusion,
we propose a network of passive KGCs, each one with its
own security parameters (e.g., private key and frequency
of trapdoor publication), which can be scattered world-
wide. Additionally, senders are able to select the number
of KGCs whose trapdoors will be required to read a mes-
sage, depending on the application and the required security
level. To ensure fairness, we have also examined methods
for decreasing possible delays in decryption, by synchro-
nizing message receivers and KGCs through NTP servers,
and by allowing for multiple KDCs. Current work is fo-
cused on implementation, including all related software for
senders/receivers, together with a small network of KGCs
and KDCs, and on embedding TRE capabilities in a number
of applications including e-voting, timed-encrypted e-mail,
and mobile messaging.

References

[1] S. S. Al-Riyami and K. G. Paterson. Certificateless pub-
lic key cryptography. In LNCS Vol. 2894, pp. 452-473.
Springer-Verlag, 2003.

[2] I. F. Blake and A. C.-F. Chan. Scalable, server-passive, user-
anonymous timed release cryptography. In 25th IEEE Inter-
national Conference on Distributed Computing Systems, pp.
504-513. IEEE Computer Society, 2005.

[3] D. Boneh and X. Boyen. Short signatures without random
oracles without random oracles. In LNCS 3027, pp. 56-73.
Springer-Verlag, 2004.

[4] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical iden-
tity based encryption with constant size ciphertext. In
http://eprint.iacr.org/2005/015, 2005.

[5] D. Boneh and M.Franklin. Identity based encryption from
the weil pairing. In LNCS 2139, pp. 213-229. Springer-
Verlag, 2000.

[6] J. Cathalo, B. Libert, and J.-J. Quisquater. Efficient and
non-interactive timed-release encryption. In LNCS 3783, pp.
291-303. Springer-Verlag, 2005.

[7] K. Chalkias, F. Baldimtsi, D. H. Varsakelis, and
G. Stephanides. A practical model for modern timed-
release encryption. In In Technical report CR-02,
http://csse.uom.gr/eprints/84/01/TRE-MODEL-CR-02.pdf,
2008.

[8] K. Chalkias and G. Stephanides. Timed release cryptogra-
phy from bilinear pairings using hash chains. In CMS ’06,
10th IFIP International Conference on Communications and
Multimedia Security,pp. 130-140. Springer-Verlag, 2006.

[9] K. Chalkias, D. H. Varsakelis, and G. Stephanides. Im-
proved anonymous timed-release encryption. In Volume
4734, pp. 311-326. Springer-Verlag, 2007.

[10] R. F. Custódio, J. da S. Dias, F. C. Pereira, and A. E. Notoya.
Temporal key release infrastructure. In 6th Annual PKI R&D
Workshop at NIST in Gaithersburg, MD, 2007.

[11] D. Deeths and G. Brunette. Using NTP to control and syn-
chronize system clocks part i: Introduction to NTP. In
http://www.sun.com/blueprints, 2001.

[12] A. W. Dent and Q. Tang. Revisiting the security model for
timed-release public-key encryption with pre-open capabil-
ity. In http://eprint.iacr.org/2006/306.pdf, 2006.

[13] D. Hristu-Varsakelis, K. Chalkias, and G. Stephanides. Low-
cost anonymous timed-release encryption. In 3rd Interna-
tional Symposium on Information Assurance and Security
(IAS ’07), 2007.

[14] Y. Hwang, D. Yum, and P. J. Lee. Timed-release encryption
with pre-open capability and its application to certified e-
mail system. In LNCS 3650, pp. 344-358. Springer-Verlag,
2005.

[15] T. May. Timed-release crypto. In manuscript, 1993.
[16] M. C. Monte, K. Harrison, and M. Sadler. The HP time

vault service: Innovating the way confidential information
is disclosed at the right time. In International World Wide
Web Conference, pp. 160-169. ACM Press, 2003.

[17] Osipkov, I. Kim, Y., and J.-H. Cheon. Timed-
release public key based authenticated encryption. In
http://eprint.iacr.org/2004/231, 2004.

[18] R. Rivest, A. Shamir, and D. A. Wagner. Time-lock puz-
zles and timed-release crypto. In MIT Laboratory for Com-
puter Science Technical Report 684. Massachusetts Institute
of Technology, 1996.

94

Authorized licensed use limited to: University of Macedonia. Downloaded on January 7, 2009 at 06:31 from IEEE Xplore. Restrictions apply.

