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The Dynamics of a Forced Sphere-Plate Mechanical
System

Dimitrios Hristu-VarsakelisMember, IEEE

Abstract—We study the dynamics and explore the controlla- model will allow us to define a “zero-translational-velocity sub-
bility of a family of sphere-plate mechanical systems. These are manifold” as the set of system states that correspond to a spin-
nonholonomic systems with a five-dimensional (5-D) configuration ing sphere with the top plate being stationary. This idea will be
space and three independent velocities. They consist of a sphere, - . . S
rolling in contact with two horizontal plates. Kinematic models of formgllzeq In Sectlon II-C. What_ we T'nd is that a fundamental
sphere-plate systems have played an important role in the control r€lationship exists between the inertial symmetry of the sphere
systems literature addressing the kinematics of rolling bodies, and the problem of achieving a desired spin. In that respect, the
as well as in discussions of nonholonomic systems. Howeverglass of sphere-plate systems considered in this work exhibit the

kinematic analysis falls short of allowing one to understand the - g5 mq critical reliance on inertial asymmetry and nonholonomic
dynamic behavior of such systems. In this work, we formulate and

study a dynamic model for a class of sphere-plate systems in order effects as the rggently popular “rattleback top” (see [22], [1_0]'

to answer the question: “is it possible to impart a net angular and [13]). Specifically, we show that the only spheres to which
momentum to a sphere which rolls without slipping between one can impart a steady spin are those whose geometric centers
two plates, given that the position of the top plate is subject to and centers of mass do not coincide. Although we focus on a
exogenous forces?” specific nonholonomic system, the study of such questions can

contribute toward understanding more general spinup problems
I. INTRODUCTION [6].

N his influential book on analytical dynamics, Whittaker The kinematics of sphere-plate systems are a prototype for
[21] brought together many of the significant results in clagiore general nonholonomic systems and as such they have been

sical mechanics, up to that time. He included a rich collecti¢ted to demonstrate key ideas in nonlinear control. In [4], [7],
of problems in rigid body dynamics, some involving nonholg@ptimal control problems were formulated for a simplified kine-
nomic systems and rolling motion. More recently, with app"matic model, sometimes referred to as the “nonholonomic inte-
cations of mathematics branching out to the areas of robot@&tor” (see Appendix). More recently, [5] used the same model
and object manipulation, such systems have come to the foreWIustrate new ideas in pattern generation and approximate in-
again, this time with emphasis on control theory. In this workersion. Kinematic models for sphere-plate systems have also
we make a detailed study of what is perhaps one of the sif§ceived attention in previous works on the control problem of
plest nonholonomic mechanical systems, called the sphere-pl&ositioning and reorienting rigid bodies under rolling con-
system. The system under consideration consists of a sphgféint (see [15], [2], [8], and others). The ideas of reachability
rolling between two horizontal plates. The bottom plate is r@nd Lie algebras play a natural role in that setting. In [17], [15],
garded as being fixed, while the top plate is movable in the hét0d others, algorithms were presented for deciding the exis-
izontal plane (see Fig. 1). Our purpose is twofold. We want §nce of admissible paths between contact configurations of two
first formulate a dynamic model for a family of sphere-plate sy$0lling bodies and for finding such paths. Those algorithms were
tems and then to use that model in the context of control theo,lurn applied in the areas of robotics and multi-fingered ma-
in order to explore the controllability properties of these sy§iPulation (see [14], [18], [16], [9], and others).
tems. To advance our understanding of sphere-plate systems be-

Itis intuitively known, and can be proven mathematically, thatond what is afforded by kinematics, we will draw on [21]
a sphere can be arbitrarily repositioned and reoriented on a pl#ffich discusses a general approach to the equations of motion
by rolling (see, for example, [15]). In this paper, we investigalf@r nonholonomic systems (originally due to Hamel), as well as
the problem of spinning-up the sphere by moving the top plafgnumber of interesting examples relevant to this work. Our ap-
By the term “spin” we understand the rotational velocity of th@roach is consistent with nonholonomic mechanics where the

sphere about the vertical axis through its center. The dynarfiguations of motion are extrema of some energy functional,
allowing arbitrary variations on the coordinates and using La-
grange multipliers to effect the constraints. This is in contrast to
the vakonomic approach [1], where the energy function is first
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Fig. 1. A sphere-plate system.
are obtained with emphasis alescribingthe behavior of the i
mechanical system. In the control systems approach one se pli
instead to identify exogenous input signals, obtain input/outp e
formulations angrescribedesired system responses [3]. Bott e
of these points of view are relevant to the goals of this work ar =il . £ T
will be used as appropriate in our discussion. | i“ e ,-'I Pt §
In Section |l, we derive the equations of motion for a clas Y, H.r:m
of sphere-plate systems. We show that asymmetry plays a ¢ ]
ical role with respect to the controllability and existence of inte i, ¥

gral invariants for the sphere-plate system, viewed as a cont.

system. By the term “integral invariant” we understand afunﬁ 2. Aclass of sphere-plate svstems

tion that depends only on the state of the control system and = P P Y '

has constant value along trajectories regardless of the choice

of control inputs. In Section I, we present simulation resulteenter of the sphere. Unless otherwise noted, quantities will

that demonstrate some control strategies for achieving spin. Tieeexpressed in a spacefixed coordinate frame whassds is

choice of control inputs that produced spin was guided by physermal to the plates. We will take the pair of external forces

ical intuition about the mechanical system. It would be desirable, u2 to be the exogenous inputs acting horizontally on the

to compute inputs that achieved a desired spin, and also satisfiefl plate.

some type of optimality condition, such as minimum energy or In the bodyfixed frameF, the sphere’s center of mass has

minimum time, to achieve that spin. That problem remains opetnordinates! € R?, with |d| = » < 1. The mass of the sphere is
ms > 0. The rotational inertia measured about any axis through
the center of mass igm with a > 0. The mass of the top plate

Il. A CLASS OFASYMMETRIC SPHEREPLATE SYSTEMS is m, > 0. Under these assumptions, the rotational inertia of

. . : . .. the sphere, expressed in any frame located at the center of mass,
Consider a sphere of unit radius (Fig. 2) that rolls Wlthoug given by the3 x 3 matrix am,I. We takee; to be theith

slipping between two pla}tes, poth_plates bemg_ horizontal W'%te%ndard basis vector Kf* and define the quantities
respect to some spacefixed inertial frame. It is assumed thal

both sphere-plate contacts (top and bottom) are maintained at all

times. The bottom plate is fixed while the top plate is allowed to d; £0d — c;
move horizontally, acted on by external forces. We will ignore dy 20d + ¢3 1)
gravity.

The five-dimensional (5-D) configuration space for thevhich represent the (spacefixed) vectors from the top and
sphere-plate system & = R? x SO(3). The phase space isbottom contacts respectively to the sphere’s center of mass.
three-dimensional (3-D) due to the rank-2 rolling constraitib the following, numerical subscripts will be used to indicate
that is imposed. We choose coordinates on the sgaes elements of vectors, unless otherwise noted. For example,
follows. Let 7 be a bodyfixed inertial frame whose origin isze = (x, e2).
fixed at the center of the sphere. The matfixe SO(3) will Armed with the above definitions, we will first obtain the
describe the orientation of the sphere. The column® afre equations of motion for the sphere-plate system assuming the
the spacefixed coordinates of the unit vectorsofThe vector mass of the top plate s, = 0. We will subsequently augment
z 2 [z1,22]"7 € R? specifies the horizontal position of theour model to include the inertial effects of the top plate.
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A. Case I: Top Plate with Zero Massy, = 0) Sinceus and ¢z are colinear and the vectowg, d;, have the

Letw € R3 be the angular velocity of the sphere, expressé&‘me projectiqn onto the horizontal plane, we can combine the
in spacefixed coordinates. The position and orientation of tRE€Cts ofus with those ofc; and regard

sphere’ggeometric centeevolve according to - [y s 0]F (10)
[”C} =S(w)es (2) to be the external force applied to the top plate. We combine (8)
0 and (9), into a system of six equations

6 =S(w)e (3)
ms(S(@)dy + S(w)?Od) =u+c
wheres : R® — SO(3)is atransformation that takes vectors in amyw =S(w)d, + S(o)dy,  (11)
R? into 3 x 3 skew-symmetric matrices\ote that (2) expresses
the rolling constraint which dictates that the instantaneous vbat must be solved for the evolution®f Eliminating the con-
locity of the bottom contact should be zero. straint forces:, we obtain
Let p € R? be the spacefixed position of the center of mass . 2 )
of the sphere. It E is the sphere’s kinetic energy, then the  (af — S(d))%)w = —=S(es)u — S(dy)S(w)"0d  (12)
equations of motion for the sphere are [20] i
If we choose to express the sphere’s orientation using

i IKE OKE _ roll-pitch-yaw angles then fat € R® we can write
7\ ap ¥ X gE =F 4)
P P
d <3KE> y OKE . ©) 0= ROtz(93)ROty(92)ROtx (91) (13)
il 5 —
dt \ dw dw Without loss of generality, we can take the center of mass to

wherey € R? is the vector of angular velocities of the iner_be located along the-axis of the bodyfixed frame and write

A
tial frame in which we chose to express matters. In our casde,_ rey, wherer = |d|. In that case, we observe that for> 0
~ = 0 because the spacefixed frame does not rotate. The'VECdet(aI —S(d)Y) =a(l+a+r2—2rsing)? >0 (14)
tors I, T € R® are the external forces and torques (including _ _ _ N
those forces necessary to enforce the nonholonomic constraiffais determinant is positive as longas< 1, so that the center

acting on the center of mass of the sphere. of mass is located inside the sphere. In particular, the matrix
Assuming the mass of the top plate is zero, the kinetic eneryyl — S(ds)?) is symmetric, positive—definite far > 0 and
of the system is r < 1, with eigenvalues
KE = %(PTﬁ + awtw) (6) A, A2 =14 a+7r? — 2rsinb,, Az = (15)
2
with the linear velocity of the sphere’s center of mass given b\{/Ve summarize the equations of motion for the rolling sphere
- . W
. X xr =
D= [0} + S(w)0d = S(w)dy. @) [—wl}
© =5(w)®
Substituting for the kinetic energy and linear velocity (6) and o1 [ 2 )
(7) into the equations of motion (4) and (5), we obtain a set of ¢ = (o — S(d1)?) <m S(es)u — S(dy)S(w) @d>-
equations that involve the time derivatives of the angular veloc- ’ (16)
ities

Alternatively, using the orientation angléshe equation for the

ms(S(w)dy + S(w)?Od) =F evolution of® [second of (16)] can be replaced by

amgw =T (8) .
0 =K(@w a7
The external forces acting on the sphere do so only through
the contacts with the plates. Let ¢ € R? be the external forces With
acting at the top and bottom contacts respectively. The vector secfycosfz seclysinfy 0
c corresponds to the forces that are necessary to enforce the  K(6) = —sin 63 cos b3 0|. (18)
rolling constraint. If we express andc in spacefixed coordi- cosfztanf, sinfztanf, 1
nates, we can write
F=ctu T=>5Swd+5S()ds 9) B. The Sphere-Plate Equations

We will now modify the model presented in the previous sec-
tion, to include the effects of a top plate with maag > 0.
{ 0 —as a2 ] For this purpose, we consider the interconnection of the plate
S(x) =

IForz,y € R®, o x y = S(x) - y with

and sphere systems. We note that the top plate has a transla-
tional velocity which is twice that of the center of the sphere. If
u, € R? is the horizontal force applied to the sphere by the top
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plate andu; u]T € R? is the external force acting horizon-where f € R® is the drift andg;, g» € R® the control vector
tally on top plate, then the dynamics of the rolling sphere (1@glds.

combined with the dynamics of the top plate We are interested in knowing whether or not there exist con-
trol inputs that can steer the system from any initial state to any
i = {ul} _u, (19) other state, i.e., connect a pair of states by a trajectory in the

Uz state-space. For this purpose, we consider the reachable set asso-

ciated with the sphere-plate control system. For the sake of com-
pleteness, we include some of the relevant definitions. Detailed

] wo discussions of the following concepts can be found in [11], [12],

T = [ } [19] and others.

6 —S5(w)0 Definition 1: The reachable set associated with a control

system is the set of states that can be reached by the system
o =J 1 <—S(db)5(w)2@d + 15(63)0 (20) starting from an arbitrary initial condition and using appropriate
ms control inputs.
Definition 2: A control system

lead to the equations of motion for the sphere-plate system

—Wwq

with u = [u1 u2 0]T [as defined in (10)] and

5

J 2 <0J — 5(dy)? — 4:1) 5(63)2) (21) X =fx)+ igi(x)m (24)
=1

We will call (20) and (21) thésphere-plate control equations.” ) _ ) ) _

We remark that/ has units of length squared. It can be checkelfith x in an smooth.-dimensional manifoldt” andw € R™ is

that the matrix/ is symmetric, positive definite far > 0. controllable |ff_or any two statego, x1, there exist a finite time
1) A Note Concerning the Autonomous Systéfhroughout 1 @nd control inputsi;(-) defined on[0, 7] so that

the discussion, we have assumed that there are no potential en-

ergy terms and that the control inputs w5 are the only external t=T m

forces acting on the top plate. However, the above analysis can Xo + / <f(x) + Z gi(x)ui> dt = x1-

be modified to include the effects of a (differentiable) potential t=0 i=1

field U on the dynamical system. For examplelifacts only

on the top plate, we can writd = U(z) and include the ap-

propriate potential energy terms in (4) and (5), or equivalentl

make the substitution

Definition 3: The controllability Lie algebra associated with
he control system of (24) is the Lie algebra generated by the
fift and control vector fields{ f, g1, ..., gm }rA-

The sphere-plate system evolves on a subset the ten-di-

ol (z) mensional (10-D) tangent bundi&, C being the five-dimen-
O (22) sional configuration space. Since the rolling constraint (2) is of
rank 2 everywherel = R? x 7.SO(3) is an eight-dimensional
l('Q—D) submanifold off’C. In D, we define the following two
submanifolds.

Definition 4: The zero-translational-velocity submanifatd

. . is the manifold
We are now ready to explore the dynamic model given by the

sphere-plate control equations (20) and address the question of , y .
whether or not it is possible to force the sphere to spin withoutZ = {x € D, (x, es) = (x,e7) =0} =R x SO(3) x S
translational motion, by some choice of control inputsu..

We will consider the special case, = 0 for the top plate. Definition 5: The configuration submanifold is the mani-
For a top plate with mass:, > 0 the discussion is largely fold

similar but with more cumbersome arithmetic. That case will be

U — U

into the last of (20). The equations of motion for the autonomo
sphere-plate system can then be obtained by seitiad).

C. The Control-System Viewpoint

omitted here. However, the casg, > 0 will be addressed in our K2 {x € Z,(x,es) =0} =R* x SO(3)
simulation of the sphere-plate system presented in Section Ill.
If we define the system state to be the vector The setZ contains state values for which the top plate is sta-
tionary. Itis a six-dimensional (6-D) submanifold Bfbecause
NE the constraint = [0 0] has rank 2 everywhere di. Similarly,
x=1|46 K is defined by imposing a rank-1 constraintnThereforeC
w is a 5-D submanifold o and is isomorphic to the configura-

) ) ) tion spac&. We observe thadl c Z C D. Itis known thatC is
with x € R® x T'SO(3), then we can rewrite the sphere-plat@aachable. In other words, the sphere can be arbitrarily reposi-
control equations in the form tioned and reoriented by appropriate top plate motions: this fact
9 corresponds to the kinematic controllability of the sphere-plate
¥ = f(x)+ 9 (0w (23) ;ystem. In the.follo_wmg we show th#te sphere-plate system
&0 ; &0 is controllable inD if and only ifr > 0.
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Because the reachable set associated with a control systemd®nsequence of choosing to place the sphere’s center of mass
invariant under feedback, we can apply a transformation to tae/ay from its geometric center. The evolution equationdfis

controls, of the type simplified greatly ifr = 0 instead, however in that case one can
check thatys = 0 and the system is uncontrollable.
w— p(x) +u The equations of motion reveal that the two control vector
¥ : D — R? continuous (25) fields commute and thus they can be thought of as spanning the
tangent space of a 2-D submanifoldZin
in order to cancel the drift terms in the evolution ©f, w», Observation 1:Let f, g1,9o € R® be the drift and control

without altering the controllability properties of the system. Thigector fields corresponding to the sphere-plate control equations
cancellation of the drift terms fap; , wo, is possible because if (26). Then[g:, g2] = 0 andInt(gy, g2) is a 2-D submanifold of
r < 1, the3 x 3 matrix J that enters the sphere-plate dynamicp,
[last of (20)], is positive definite. Thus, its upper-left 2 sub- Proof: The drift and control vector fields corresponding
matrix is invertible, allowing us to solve for the inputs that forcéo the dynamic model of the sphere-plate system are given in
) ) (26). The statemeriy;, g2] = 0 can be checked directly from
Wi =up w2 = Uz the algebraic expressionsf, g». Alternatively, notice that the

Without loss of generality, we choode= re; for the bodyfixed vector fieldsf, g1, g» are of the form

location of the center of mass relative to the center of the sphere. AC) 0
The resulting expressions for the drift and control vector fields F(0.w) = | fo(8,w) g1(8) = 0
are | f3(f,w) h(6)e1
wo 0 0 [0
—w1 0 0 g2(0) = 0 (29)
K(fw 0 0 h(6
p= | FOl w=] V] w=]0] @0 M)z
0 0 1 wheref, € R%, f,, f3 € R® and@ is the vector of the sphere’s
vy Var Vg, orientation angles. Th& x 3 matrix 2(¢) enters only in theu
equation but does not depend @nFrom this fact, and from
where the definition of the Lie bracket, we conclude that, g»] =
A o wT Qu 0 an_d that all elements ifif, g1, g2 }1.4 involving [¢1, g2] are
vy =r"cos by identically zero.
A 27 c0s 0y cos 05(1 — 7 sin ) _ The abov_e statement implies the_lt at least locally, there ex-
Vg, = ;S ists a coordinate change under which bgthand g, are con-
A 27 cos B sin 63(1 — 7 sin 6,) stant, therefpre there exists a 2-D integral manifold who_se tan-
Vg, = 5 gent space is spanned by, g.. We observe thag;, g» are in-

27) dependent and nonzero. Sing€(3) is parallelizable, we have
TSO(3) = SO(3) x R3. ThereforeInt(g;, g-) is a 2-D sub-

andQ is a rank-23 x 3 matrix, shown in (28) at the bottom of manifold of SO(3) x R®. =

the page. We note that the coordinateandé; are ignorable,  Proposition 1: Consider a sphere-plate control system, with

i.e., they do not appear on the right-hand side of the equatichdnit sphere of mass,; and a top plate of mass,,. Letam, be

of motion. This is because we chode= r¢; and because we the sphere’s rotational inertia about any axis through its center

arranged matters so that the rotational inertia of the sphere Bhghass. Furthermore, let € R® be the location of the center

the same value about any axis through the sphere’s centePbfass relative to the center of the sphere, with=r < 1.

mass. As a result, rotation about the axis connecting the geoForz € R?, © € SO(3), w € R*> andu = [u; u2 0], the

metric center and the center of mass—precisely whahea- Set of equations

sures—leaves the dynamics invariant. By ignotirandd;, one { " }
. 2
xr =

8 22a 4 % 4 % cos(26,)

can consider a reduced, 5-D version of the sphere-plate control
system, with statéé-, 65, w). We will show controllability for )
the full 8-D system. We remark that the evolution equation for ~ © =5(w)©

—Wwq

the angular velocities (last of (20)) appears to be more compli- . 2 2
cated than the rest of the equations of motion. This seems to be =7 | 79(Od +¢3)3(w)"0d + —=S(cs)u
2sin 03 cos 6 cos 03 — cos 03 cos(203) — sin @ sin 3
Q= | —cosflzcos(203) —2sinfzcosfycosfls sinfycosfs | . (28)

— sin @5 sin 05 sin @y cos 03 0
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describes the motion of the sphere-plate system. This two-infiut Toward Generality

system is small-time locally controllable in tr?e 8-D spdeé Controlling the angular momentum in a sphere-plate system
and only ifr > 0, i.e., if and only if the sphere’s center of mas$4, pe viewed as a special case of a more general spinup

does not coincide with its geometric center. problem [6]. Consider the-dimensional control system:
Proof: If » = 0 then the center of mass is located on the

segment joining the top and bottom sphere-plate contacts. The . A -

torque applied to the sphere about the spin axis is identically & =g(z,u) = fl@) + zlzgi(x)u‘ (30)

zero. Therefore, the angular momentum of the sphere about the

spin axis is conserved and is an integral invariant for the systef¥ith the state evolving on a manifold and(z, ¢(z, u)) € TX'.

We conclude that the system cannot be controllable. We will call this the “base” control system and use it to define
If > 0, let £(8,w) € R® be the drift andy. (6), g=(¢) € R® @ “derived” control system o2 X by

be the control vector fields associated with the sphere-plate con- m

trol equations, after we have used feedback to eliminate the i=flz)+ Zgi(a:)ui (31)

drift terms in the equations fab,, w> (see (26) for the case of 1

my, = 0). If the manifoldD was not reachable, evesyx 8 ma-  jth state(z, &) € T.X'. We could then pose the question: “given
trix P composed of elements froffy. g;. g2}1.4 would have a {hat the base system (30) is controllable, under what conditions

determinant vanishing on open sets. Sideg(’) is an analytic is the derived system (31) also controllable?” Toward answering
function of the state, it cannot vanish on open sets without beififjs question, we can offer the following facts.

identically zero. Observation 2:The control vector fieldsg;(z) =
The following set of elements are taken frdify g1, 92314 [0TgF(x)]T of the derived system (31) defined @Y, com-
mute with each other. In addition, if the matrg,, ..., gm]
g1, g2 has constant rank thenInt(gy, . .. , g ) is anm-dimensional
[fron] S92 submanifold of7'X’.
Proof: To showlg;,g;] = 0forall,j € {1,...,m}, use
ol 119l the definition of the I[_ie bercket and the faci théa; /83‘:}: 0.
£ U gl LA LF5 U 920l If the control fields are all independent and of constant rank
then Frobenius’ theorem gives us the existence of the integral
form an8 x 8 matrix P whose determinant is nonzero for generighanifold. u

choices of system parameters and state values. We conclude thHt general, once we pass from the base system to the derived
det(P) can only vanish on isolated points, therefore the abo¥stem we can no longer rely on the control vector fields to span
eight elements of f, g1, g2} 1.4 Span almost everywhere . additional directions by means of Lie bracketing. If there are
This fact, combined with Chow’s theorem, tell us that the Frob&: independent nonzero control fields, the remairéag— m
nius manifold spanned b{f, g1.g2}1.4 is locally diffeomor- directions must be generated by bracketing with the d¥ift).
phic toR® which precludes the existence of (nontrivial) integrdf the case of a base system which is linear time invariant (LTI),
invariants and shows that almost every poiriis contained in  the situation is simply the following.
a neighborhood which is reachable.In light of our choice of el- Corollary 1: The LTI systemi = Az + Bu, x € R", u €
ements from{ £, g1, g2 }1.4 SpanningD, we conclude [20, Prop. R™ is controllable if and only if the system = Ax + Bu is
7.4] that the sphere-plate system is small-time locally contrdiontroliable. )
lable from any equilibrium point ifD. Proof: The prooffol!ows from thefact that.the systém=

The existence of the integral invariant for= 0 implies that <% + Bu is controllable if and only if the matrix
the set of state€ — K, corresponding to nonzero spin, is not 0O B 0 AB 0
reachable froniC. There does not appear to be a compact way to B 0 AB 0 A2B
characterize the elements{of, g1, g2 }1.a, and since their sym-

bolic expressions take considerable space, we will not inclutfgull rank. u
them here.

Note that we were able to show controllability for the 1. SIMULATION RESULTS
system using elements taken exclusivel);cfromcthgnchain of  The evolution of the sphere-plate system was simulated for a
{f:91,92}1a (i.e., elements of the formd}g; wheread;g =  sphere of unit radius with mass, = 2.1 kg anda = 0.5. The

[f. g])- This brings up the question of whether or not the systegeometric center of the sphere was initiallyzat= [0 0]T. The

can be linearized, with the linearized version being contrghass was located at a distance= 1 m from the center of the
lable. Using the formulas for the drift and control vector fieldgphere, along the-axis of the bodyfixed frame. The mass of the
fr91.92 (26)—(28), we letp = f(x) + gi(x)u1 + g2(x)uz  top plate wasn, = 0.5 kg. Two simulations were performed,

so thatxy = ¢(x,u) and calculatedd = d¢/dx and one to spin-up the sphere starting from rest and the other to
B = d¢/0u. A straightforward but tedious computation showsncrease the angular momentum of an already spinning sphere.
thatrank ([B AB A’B ... A"B]) = 7 for all x andw. The In both cases, the top plate was required to be stationary at the
expressions ford and B are particularly lengthy and will not be beginning and end of the simulation. The sphere-plate control
included here. We conclude that any time-invariant linearizati@guations (20) were used, with the external forces applied to the
of (20) about an equilibrium point is uncontrollable. top plate being the control inputs and no potential field present.
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Fig. 3. Spacefixed evolution of sphere—first simulation. Fig. 5. Spin angular velocity—first simulation.
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Fig. 4. Bodyfixed evolution of center of mass—first simulation.

Fig. 6. Kinetic energy of sphere—first simulation.

A. First Simulation: Spinup of a Stationary System such that the top plate remained stationary. These forces can

I . be computed from the equations of motion, as the solutions to
The system was initially at rest, with the center of mass lo- P q

cated on the sphere’s equator i®.= I or equivalentlyd = 0. “* = “2 = 0. They are

— T i
A constant external force = [0 9]' NV was applied to the top L (1 + sin )

plate for 1.3 seconds and then the top plate was brought to a stop UL = — Msw3————— €08 02 cos b3 (32)
by a high-gain proportional control that servoed on the transla- (1 + sin )
tional velocity of the sphere. Fig. 3 shows the spacefixed evolu- Up = — mswgf cos 02 sin 63 (33)

tion of the sphere. The center of mass is shown as a small dark
ball on the surface of the sphere. To avoid occluding the sphere,
the top plate was not drawn. The trajectory of the bottom co
tact is plotted on the—y plane. As the sphere rolls forward, th
center of mass follows the trajectory shown as a cross-hatche
curve. When the top plate comes to a stop at the end of the simuA second simulation was performed to show an example
lation, the center of mass continues to move with zero latitudinafl increasing the angular momentum of an already spinning
velocity and a constant longitudinal velocity, corresponding &phere. The inertia parameters were unchanged from the
a steady spin for the sphere. Fig. 4 shows the trajectory of theevious simulation. The initial conditions weféd) = 0 and
center of mass of the sphere, in a bodyfixed coordinate fran€0) = [0 0 2]* rad/s.

whose origin is at the center of the sphere and whose axes refhe strategy used to increase the energy associated with the
main parallel to those of the spacefixed frame. The spin angutginning sphere was motivated by physical intuition: With the
velocity w3 is shown in Fig. 5. Fig. 6 shows the time historytop plate at rest, the control inputs of (32) and (33) will keep the
of the kinetic energy stored in the sphere. Once a constant sfp plate stationary, (i.ey; = w2 = 0). In that case, the sphere
was achieved with the top plate at rest, the control inputs wesdl remain in the same horizontal position while spinning with

B second Simulation: Increasing the System’s Angular
8mentum
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Fig. 7. Spacefixed evolution of sphere—second simulation. Fig. 9. Spin angular velocity—second simulation.

60

501

40

30

Energy (J)

20

101

Time (s)

Fig. 10. Kinetic energy of sphere—second simulation.

Fig. 8. Bodyfixed evolution of center of mass—second simulation.
IV. CONCLUSION

a constant angular velocity;. While in that situation, we ex- We have formulated a dynamic model fOT a family of sphere-
“ " . . late systems. These are 8-D nonholonomic systems that model
pect to be able to “pump” energy into the system by sllghtlg . . L
“leading” the anale of rotatio sphere rolling without slipping between two parallel plates.
9 9 3 Motivated by some recent questions on more general spin-up

. problems, we have considered the control problem of spinning
5 (14 sinfy)

Uy = — mawi-————"22 cos 0y cos(f3 + €) (34) the sphere between the two plates by means of exogenous forces
2 applied to one of the plates.
Uy = — mswgw cosfasin(fs +¢).  (35) The control vector fields associated with the sphere-plate

system commute, as would be the case with any system of the
) ) ) _ form & = f(z) + >°7 g:(x)w;, with z in a finite-dimensional

In our simulation, we applied = 0.3 rad starting at = 1 sec. manifold Y. It would be interesting to explore more general
At ¢ = 3 sec, the top plate was again brought to rest using g ations of this kind in order to find out under what conditions

same high-gain proportional control as in the previous simulggnrollability of the system off A’ translates to controllability
tion. The spacefixed trajectory of the center of mass is showpthe system o2, as suggested in [6].

in Fig. 7. The trajectory of the bottom contact is plotted on the The sphere-plate system under consideration is small-time
z—y plane. Fig. 8, shows the motion of the center of mass jgcally controllable if and only if the sphere’s center of mass
the bodyfixed coordinate frame described in Section 1lI-A. Th&qd geometric center do not coincide. In that case, the system
center of mass changes latitude as it moves, fromits initial locgan be excited so as to have a spinning motion by an appro-
tion on the equator to somewhere closer to the pole. We wogglate choice of inputs. A sphere-plate system without this iner-
expectthe spinto increase as aresult of the decrease in the effie¢asymmetry has an integral invariant associated with the an-
tive radius of rotation. Aside from this however, the increasegilar momentum of the sphere. Furthermore, sphere-plate dy-
spin was also due to the kinetic energy that was added into tiemical systems cannot be approximated by controllable LTI
system by the exogenous forces. Figs. 9 and 10 show the tigyastems. We have presented two control strategies for altering
histories of the spin and the kinetic energy, respectively. the angular momentum of the sphere, starting from rest or from
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Since the sphere’s translational velocity is zera at 0 and
t = T, we haveu(0) = w(7T) = 0 andv(0) = »(T) = 0.
Applying integration by parts to (38) gives

T T
/ Zdt :/ (xy — yx)dt
0 0
T

T
:xy‘|§—/ a‘:y‘dt—ya‘:|§+/ Fydt =0
0 0

Dimitrios Hristu-Varsakelis (S'92—M'99) was born
in Thessaloniki, Greece. He received the B.S. degree
in electrical engineering and computer science from
the University of California at Berkeley, the M.S. de-
gree in electrical engineering from Rensselaer Poly-
technic Institute, Troy, NY, and the M.S. and Ph.D.
degrees in applied mathematics and engineering sci-
ences from Harvard University, Cambridge, MA, in
1992, 1994, and 1999, respectively.
or z(()) = z(T) [ He is currently an Assistant Professor in the De-
partment of Mechanical Engineering at the University of Maryland, College
Park. His research interests include control with limited communication, dis-
ACKNOWLEDGMENT tributed systems, geometric control theory, intelligent machines, and robotics.
. Dr. Hristu-Varsakelis was the recipient of the 1999 Eliahu Jury award from
The author would like to thank R. W. Brockett, K. Morganser}he Division of Engineering and Applied Sciences, Harvard University. He is an

and the anonymous reviewers for their useful comments. affiliate member of the Institute for Systems Research.









