
This article was downloaded by:[Hristu-Varsakelis, D.]
On: 5 June 2008
Access Details: [subscription number 793750683]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

LQG control of networked control systems with access
constraints and delays
D. Hristu-Varsakelis a; Lei Zhang b
a Department of Applied Informatics, University of Macedonia, 165 Egnatia St.,
Thessaloniki, 54006 Greece
b Western Digital Corporation, San Jose, CA, 92630 USA

First Published: August 2008

To cite this Article: Hristu-Varsakelis, D. and Zhang, Lei (2008) 'LQG control of
networked control systems with access constraints and delays', International
Journal of Control, 81:8, 1266 — 1280

To link to this article: DOI: 10.1080/00207170701697742
URL: http://dx.doi.org/10.1080/00207170701697742

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207170701697742
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [H
ris

tu
-V

ar
sa

ke
lis

, D
.] 

A
t: 

05
:4

6 
5 

Ju
ne

 2
00

8 

International Journal of Control

Vol. 81, No. 8, August 2008, 1266–1280

LQG control of networked control systems with access constraints and delays

D. Hristu-Varsakelisa* and Lei Zhangb

aDepartment of Applied Informatics, University of Macedonia, 165 Egnatia St.,
Thessaloniki, 54006 Greece; bWestern Digital Corporation, San Jose, CA, 92630 USA

(Received 26 January 2007; final version received 23 September 2007)

We explore the LQG control of a networked control system (NCS) in which a linear plant is

controlled remotely over a network or other shared communication medium. The medium

provides a limited number of simultaneous connections, so that only a subset of the plant’s

sensors and actuators may communicate with the controller at any one time, subject to known

transmission delays. Instead of insisting on jointly optimal control and medium access policies,

we reduce the infinity of possible access sequences down to those which preserve the

stabilisability and detectability of the underlying plant, and are periodic. Our choice of

communication and NCS model effect a kind of ‘decoupling’ of the LQG problem, in the sense

that the medium access policy can be selected independently of the controller. This guarantees

the existence of a stabilising LQG controller which is optimal for the communication policy

of choice, and which is then combined with a delay compensator. We include simulations that

illustrate our approach.

Keywords: networked control systems; medium access constraints; limited communication

control; LQG control

1. Introduction

The class of control systems whose feedback loops are
closed via networks or other shared communication
media has enjoyed steadily-rising interest among
researchers during the last decade. In part because of
their flexibility, these so-called networked control
systems (NCSs) are now encountered in a wide range
of domains, from academic laboratories, to commer-
cial vehicles and aerospace applications (Hristu-
Varsakelis and Levine 2005). This expansion has
been accompanied by several productive efforts to
elucidate systems theory at the intersection of control
and communication, solve control design problems in
the new setting, and quantify the performance of
existing methods in the presence of limited
communication.

Broadly speaking, the majority of NCSs research has
focused on three principal categories of communica-
tion constraints which are briefly described next, with
discussions typically addressing the effects of a single
type of constraint and ignoring the others; see Hristu-
Varsakelis (2005) for a recent review. The first category
includes NCSs whose communication medium has
limited throughput (e.g., bits per second), and one

seeks conditions that guarantee various control objec-
tives, such as containability (Wong and Brockett 1997,

1999), stability, and estimation (Nair and Evans 2000;

Tatikonda and Mitter 2004). The second includes so-
called access constraints, where the shared medium

limits the number of sensors and actuators that may

communicate with the controller simultaneously. In
that setting, NCS stabilisation (Brockett 1995; Hristu

and Morgansen 1999; Hristu-Varsakelis and Kumar

2002) and optimal control problems (Rehbinder and
Sanfridson 2000; Lincoln and Bernhardsson 2000a)

have received perhaps the greatest share of attention.

Other work (Azimi-Sadjadi 2003; Imer et al. 2004) has
examined the question of stability when data transmis-

sions between controller and plant occasionally fail to

reach their destination (and are thus referred to as
‘dropped packets’). More recently, (Imer and Basar

2006) approached the fundamental question of how

much of the network’s time should be devoted to
measuring versus controlling the underlying plant.

Finally, a third class of communication constraints

involves transmission delays which may be imposed by
the shared medium. Aside from the voluminous

literature on time-delay systems, much of the
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8 analysis there has assumed that the controller was
designed a priori, and investigated the effect of delays
on the stability of the resulting closed loop (e.g.,
Walsh et al. (2001) and Branicky et al. (2000); see also
Zhang et al. (2001) for an informative review). The
work of Nilsson (1998) stands out in that area, having
explored (along with later extensions (Lincoln and
Bernhardsson 2000b; Kao and Lincoln 2004) a
substantial array of questions, including stability and
optimal control for NCSs that are subject to random
delays.

This paper discusses the LQG control of stochastic,
linear NCSs, where medium access constraints and
delays may be present simultaneously, and one is called
to specify the controller and the communication policy
that will govern plant/controller interactions. In the
present context, the term ‘communication policy’ is to
be understood as a sequence which prescribes the times
at which the plant’s sensors and actuators are to be
granted medium access in order to exchange data with
the controller. Arriving at a satisfactory solution of the
LQG problem requires coming to terms with the
‘strong’ coupling between control and communication
that frequently arises in NCSs with access constraints.
More precisely, the choice of communication policy
influences the performance of the controller, just like
the choice of controller may result in good perfor-
mance for some communication policies, but not for
others. This leads to technical difficulties and high
complexity, if one insists on a jointly optimal solution
(see, for example, the LQ problems in Hristu (1999),
Rehbinder and Sanfridson (2000) and Lincoln and
Bernhardsson (2000a)). Consequently, one must often
make strong assumptions regarding the underlying
plant (Branicky et al. 2002, Rehbinder and Sanfridson
2000) such as ‘block-diagonal’ dynamics (Hristu-
Varsakelis and Kumar 2002), or medium access
constraints that exist for input or output signals,
but not for both (Montestruque and Antsaklis 2004,
2005).

The complexity resulting from the interplay between
control and communication decisions is sometimes
unavoidable; this is especially true in control
problems involving NCS with medium access con-
straints where we insist on optimising simultaneously
with respect to the medium access policy as well as
the controller. The difficulty of selecting a suitable
control-communication policy pair can also depend on
the protocol used by the controller and plant, as well as
on the NCS model adopted at the outset. For example,
depending on the approach taken, the question of
whether a stabilising feedback controller exists could
be NP-hard – even if the communication policy is fixed
in advance e.g., Hristu-Varsakelis and Morgansen
(1999) and references therein – or much simpler,

Zhang and Hristu-Varsakelis (2006). In particular,
the use of a zero order hold (ZOH) at the ‘receiving
end’ of a communication medium (i.e., at the
plant’s and controller’s input stages) may have the
effect of introducing time-varying delays and may
necessitate state augmentation; see, for example, the
‘extensive form’ in Hristu-Varsakelis and Morgansen
(1999).

The contribution of this paper is to propose a
solution to the LQG problem for NCSs by pursuing
a ‘separation’ of the control and communication
sub-problems. We explore the use of an NCS
architecture whereby the plant and controller forgo
the use of a ZOH and instead choose to ‘ignore’ (in a
manner to be made precise) the actuators and sensors
that are not actively communicating. This is not
essential, but it simplifies the notation and gives a
low complexity model. Under the proposed approach,
the communication sequences that determine control-
ler-plant interactions can be designed easily and
independently from the controller. Furthermore, by
proper choice of communication, the problems of state
estimation and LQ optimal control for a NCS become
a standard LQG problem which can be addressed
using existing design tools from LTV systems theory.
The separation discussed above is rather fortunate in
our case; it does not usually occur in problems
involving control of NCSs, and is partly the result of
a trade-off. Specifically, we will not attempt to solve
the joint problem (i.e., find the optimal communication
policy), but instead will identify classes of communica-
tion sequences which are ‘good enough’, in the sense
that they make the design of the accompanying LQG
controller straightforward. Our approach is motivated
by recent results (Zhang and Hristu-Varsakelis 2005b,
2006) on the NCS feedback stabilisation problem; it
avoids the complexity associated with previously
proposed models and addresses multi-input multi-
output (MIMO) NCSs whose dynamics are ‘fully
coupled’. To the authors’ knowledge, this work is the
first to provide a solution to the LQG problem under
medium access constraints and delays. A preliminary
version of this work appeared in Zhang and Hristu-
Varsakelis (2005a) and Hristu-Varsakelis (2006).
For related work on state estimation for simple NCS
configurations see Micheli and Jordan (2002), Sinopoli
et al. (2003) and Liu and Goldsmith (2004).

The remainder of this paper is structured as follows.
In x 2 we show how a MIMO NCS with medium access
constraints can be modelled as a time varying system
with a reduced number of inputs and outputs, and pose
the LQG problem for NCSs. In x 3 we explore the
problem of choosing the communication policies that
will manage data exchanges between controller
and plant. We prove that for a stabilisable (detectable)

International Journal of Control 1267
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8 plant, it is always possible to design a policy which
preserves stabilisability (detectability) after medium
access constraints and delays are put in place. Agreeing
to always use such a policy will effectively decouple the
selection of the controller from that of the commu-
nication. x 4 discusses sufficient conditions for the
convergence of the Kalman filter and optimal LQ gains
associated with the LQG controller. x 5 describes a
delay compensation method, inspired by Luck and
Ray (1990, 1994), that may be applied when controller-
plant communications are subject to known delays. A
numerical example is given in x 6.

2. NCS model and problem formulation

Our NCS model is a stochastic version of that in
Zhang and Hristu-Varsakelis (2006). Consider an NCS
in which a remote controller interacts with a stochastic
linear time-invariant (LTI) plant via a shared medium
(see Figure 1). We will take x 2 R

n, u 2 R
m, and

y 2 R
p to be the plant’s state, input, and output

vectors, respectively. The medium limits communica-
tion in two ways: (i) it imposes communication delays,
and (ii) it does not allow simultaneous communication
with all of the plant’s sensors and actuators. More
specifically:

. There are w� available output channels connecting the
sensors to the controller, where 1�w�< p. That is,
only w� of the p sensors can transmit their output to
the controller at any one time, while others must
wait. Furthermore, data transmitted by the plant at
time t, arrives at the controller at tþ �pc for some
�pc>0.

. Similar constraints apply at the plant’s input stage,
where m actuators share w� input channels,
(1�w�<m) to receive control signals from the
controller. At most w� of the m actuators can
access the input channels simultaneously, while
controller-to-plant communication is subject to a
delay of �cp>0.

The delays �cp and �pc will be taken to be known. We
will ignore any bit-rate constraints or quantisation

effects associated with the transmission of data
through the communication medium.

Based on these assumptions, the NCS takes on the

configuration shown in Figure 2, where the ‘open’ or
‘closed’ status of the switches indicates the medium

access status of the corresponding sensors or actuators.
The vectors �y2R

w� and �u2R
w� are the controller input

and output, respectively, and will generally differ
from the plant output y and input u (in a manner

which will be made precise shortly) because of the
communication constraints described above. We have

in mind that the plant may evolve either in discrete or
in continuous time (in which case it is sampled

periodically). Although our approach will apply to
both settings, it will be convenient to begin with the

discrete-time case

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ vðkÞ

yðkÞ ¼ CxðkÞ þ wðkÞ, k ¼ 0, 1, 2, . . . :

)
ð1Þ

The implications of a continuous-time plant will be
discussed in x 5. In (1), the disturbances, v(�), w(�), are

both Gaussian, i.i.d., with v(�)�N(0,G) and
w(�)�N(0, Ip�p), where Ip� p is the p� p identity

matrix and G¼GT>0 is n� n. The initial condition
x(0) is assumed to be Gaussian as well, with

x(0)�N(x0,�0), �0 ¼ �T
0 > 0.

The problem we are concerned with is the following.

Problem 1: Given a linear stochastic NCS where the

plant (1) communicates with its controller subject to
given access constraints (w�, w�) and delays (�pc, �cp),
find a medium access policy for the plant’s sensors
and actuators, and a control policy, such that the

cost function

J ¼ E
XNf

k¼0

xTðkÞQxðkÞ þ uTðkÞuðkÞ

( )
ð2Þ

Plant

Controller

… …

um

y1

yp

u

τcp
τcp

1

Input channels Output channels

Figure 2. Modelling medium access constraints and

transmission delays. The possible positions of the switches

indicate which sensor(s)/actuator(s) are granted access to

communicate with the controller.

Plant

Controller

Communication medium

Figure 1. A networked control system with its three

principle components.
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8 is minimised, where Nf>0, and E denotes expected

value.

We note that in Problem 1 the communication

constraints enter indirectly, via the relationship

between the transmitted and received information

that is exchanged between plant and controller ( �u

and u, �y and y). To describe that relationship we will,

for the moment, consider the NCS dynamics under

medium access constraints only, assuming a determi-

nistic plant with no transmission delays, i.e.,

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ;

yðkÞ ¼ CxðkÞ:

)
ð3Þ

We will return to the stochastic setting (1) in x 4; in x 5

we will present the required modifications for the case

where access constraints and delays are present

simultaneously.

2.1 Communication sequences: modelling
access constraints

For i¼ 1, . . . , p, let the binary-valued function �i(k)
denote the medium access status of the i-th output, yi,

at time k, i.e., �i(k) :Z � {0, 1}, where 1 means

‘accessing’ and 0 means ‘not accessing’. The medium

access status of all p outputs will be represented by a

‘p-to-w� communication sequence’ (Hristu-Varsakelis

and Morgansen 1999; Zhang and Hristu-Varsakelis

2005b),

�ðkÞ ¼ ½�1ðkÞ, . . . , �pðkÞ�
T:

Definition 1: Let M, N 2 N with N�M. An M-to-N

communication sequence is a map, �(k) :Z � {0, 1}M,

satisfying k�(k)k2¼N, 8k.

As we have previously indicated, at each time k, the

controller is to compute plant inputs based only on

data from the w� sensors which were granted medium

access; all others will be effectively ignored. Let the

output received by the controller at time k be denoted

by �yðkÞ ¼ ½ �y1ðkÞ, . . . , �yw� ðkÞ�
T, i.e., �yðkÞ contains those

elements from y(k) for which �i(k)¼ 1. To establish the

relationship between y(k) and �yðkÞ, we will make use of

the following notation.

Definition 2: Let �(k) be an M-to-N communication

sequence. Then, for all k 2 N, the N�M matrix ��(k)
is obtained by deleting the M�N all-zero rows from

the M�M matrix diag(�(k)). We will refer to ��(�) as
the matrix form of �.

Example 1: If �(1)¼ [1, 1, 0, 1]T, then

��ð1Þ ¼

1 0 0 0

0 1 0 0

0 0 0 1

2
64

3
75:

Using the last definition, we can express �yðkÞ as

�yðkÞ ¼ ��ðkÞyðkÞ, ð4Þ

where �(k) is the output communication sequence.

Similarly, the medium access status of the plant’s m

inputs will be represented by an m-to-w� communica-

tion sequence �(k). When an input, uj, loses its access

to the communication medium, the plant will ignore

that input until the corresponding actuator regains

medium access, by setting uj¼ 0 while �j¼ 0. Let
�uðkÞ ¼ ½ �u1ðkÞ, . . . , �uw�ðkÞ�

T denote the elements of u(k)

whose actuators were granted medium access and

received updated inputs from the controller at time k.

Under the protocol outlined above,

uðkÞ ¼ ��ðkÞ
T �uðkÞ: ð5Þ

In the sequel, we will refer to �(�) and �(�) as the input
and output communication sequences, respectively.

By combining (3)–(5), we obtain a linear time-

varying (LTV) system with w� inputs and w� outputs:

xðkþ 1Þ ¼ AxðkÞ þ B��ðkÞ
T �uðkÞ

�yðkÞ ¼ ��ðkÞCxðkÞ:

)
ð6Þ

These equations describe the NCS ‘from the

controller’s point of view’. We will refer to (6) as

the extended plant; it incorporates the dynamics of

the plant together with the access status of the

communication medium.

Remark 1: The choice of ‘removing’ the ZOH

elements commonly included in previous NCS models

has the effect of avoiding any ‘enlargement’ of the state

vector (to include past states or inputs) and leaves us

with an LTV system whose parameters are functions

of the input and output communication sequences.

This situation is to be contrasted with Brockett (1995)

and Hristu-Varsakelis and Morgansen (1999), among

others. We also note that the choice of representation

for the signals �u(k) and �yðkÞ, as well as for the

sequences ��(k), ��(k) differs from that in Zhang and

Hristu-Varsakelis (2005b, 2006), where u and �u (resp. y

and �y) have the same dimensions. Here, we have

‘removed’ the unavailable outputs and inputs from the

NCS model, as seen by the controller whose

International Journal of Control 1269
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8 dimensions are thus reduced (w��w� instead of
m� p). In x 4.1, 4.2, this choice will help avoid
singularities that would arise when solving the matrix
Riccati equations associated with the LQG problem.
A similar technique is mentioned in Bittanti et al.
(1991) for multi-rate systems.

Remark 2: Our communication protocol requires
that actuators, in a sense, ‘turn off’ when they are
not communicating. Alternatively, it is possible to
amend the extended plant model to include zero-order
holding of inputs, by enlarging the state to include
those inputs which are not updated, i.e.,

xðkþ 1Þ ¼ AxðkÞ þ BðI�M�ðkÞÞuZOHðkÞ

þ B�T
� ðkÞ �uðkÞ;

uZOHðkþ 1Þ ¼ ðI�M�ðkÞÞuZOHðkÞ þ �
T
� ðkÞ �uðkÞ:

9>>=
>>;
ð7Þ

where M�(k),diag(�(k)), as in Zhang and Hristu-
Varsakelis (2006). The discussion that follows can
be modified accordingly if one wishes to adopt (7). The
details of that approach are straightforward but
tedious, and will not be pursued here. See, however,
Ionete and Cela (2006).

3. Choosing effective communication sequences

In Problem 1, we are called to decide: (i) the
communication sequence which will control traffic on
the shared medium, and (ii) the controller which will
produce �u(�). As in most problems involving optimal
control of NCS with access constraints, the optimum
depends on the choice of communication sequence, as
it is the latter that determines the time-varying
dynamics of the extended plant (6). Solving the joint
problem, i.e., optimising with respect to both control
and communication is generally difficult (e.g., Hristu
(1999), Rehbinder and Sanfridson (2000) and Lincoln
and Bernhardsson (2000a)), and often involves combi-
natorial complexity. Instead of insisting on the joint
optimum, we will solve a relaxed version of Problem 1
using Zhang and Hristu-Varsakelis (2006). We will first
reduce the infinity of possible communication policies
down to a set of sequences which guarantee the
existence of an accompanying optimal LQG controller,
and are easy to generate. That set will contain
sequences which, for the purposes of LQG control,
we will consider equally satisfactory, and which
preserve the stabilisability and detectability of the
underlying LTI plant which gives rise to (6).

Definition 3: The system (6) is controllable on [k0, kf]
if, given any x0, there exists a control signal �u(�) that

steers (6) from x(k0)¼ x0 to the origin at time kf. We
say that (6) is l-step controllable, or simply controllable
if there exists a positive integer l such that (6) is
controllable on [k, kþ l] for any k.

Definition 4: The system (6) is observable on [k0, kf]
if, given its input on [k0, kf], any initial condition at k0
can be uniquely determined by the output response
�yðkÞ for k 2 [k0, kf]. We say that (6) is l-step observable,
or simply observable if there exists a positive integer
l such that (6) is observable on [k, kþ l] for any k.

Definition 5: The system (6) is reconstructible on
[k0, kf] if, given its input on [k0, kf], x(kf) can be
determined by the output response y(k) for k 2 [k0, kf].
We say that (6) is l-step reconstructible (or ‘recon-
structible’) if there exists a positive integer l such that
(6) is reconstructible on [k, kþ l], for any k.

It will be convenient to initially assume that the matrix
A in (6) is invertible, so that controllability and
reachability of (6) are equivalent, as are observability
and reconstructability. The case where A may be
singular will be treated later in this section.
The following theorem and the sequence selection
algorithm contained in its proof are obtained by
modifying a similar result from Zhang and Hristu-
Varsakelis (2006) to account for the matrix representa-
tion of the communication sequences, �� and ��.

Theorem 1 (Zhang and Hristu-Varsakelis 2006): Let
the pair (A,B) be controllable, where B is n�m, and A is
invertible. For any integer 1�w�<m, there exist
integers l,N>0 and an N-periodic1 m-to-w� commu-
nication sequence �(�) such that the extended plant (6) is
controllable on [k, kþ l] for all k, and thus controllable.

Proof: Let

R, ½AN�1B�T
� ð0Þ,A

N�2B�T
� ð1Þ, . . . ,B�T

� ðN� 1Þ�: ð8Þ

The system (6) is controllable on [0,N] iff rank(R)¼ n.
Notice that, at each step k, the input communication
sequence �T

� ðkÞ has the effect of ‘selecting’ w�
columns from the m columns of the term AN�k�1B
on the RHS of (8). Also notice that for all i¼ 0,1, . . .

the matrices Di¼ [Aniþn�1B, Aniþn�2B, . . . ,AniB], con-
tain n linearly independent columns, because A is
invertible and (A,B) is controllable. Then, in the worst
case w�¼ 1, the required sequence �(�) can be generated
using the following algorithm:

(1) Let Di¼ [Aniþn�1B, Aniþn�2B, . . . ,AniB], where
i¼ 1, 2, . . . .

(2) Let Fi ¼ ½ f
0
i , . . . , ; f n�1i � be a matrix formed by any

n linearly independent columns from Di.
(3) Let F¼F0.

1270 D. Hristu-Varsakelis and L. Zhang
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8 (4) Replace f 10 in F by a column from F1 while
maintaining rank(F)¼ n. Such a replacement can
always be found because rank(F1)¼ n.

(5) For i¼ 2, . . . , n� 1, replace f i0 in F by a column
from Fi while keeping the rank of F fixed. The
resulting matrix F has one column from each Di

(i¼ 0, . . . , n� 1), and has rank n.

This algorithm ensures that it is possible to select n
linearly independent columns as long as one can select
one column from each Di. For the less restrictive case
w�>1, the communication sequence �(�) selects n �w�
columns from each Di on the RHS of (8) (via the
term �T

� ð�Þ). Therefore, one can always produce
(this time replacing w� columns in F at each step)
a sequence that selects n independent columns from
the RHS of (8) in at most kfdn=w�e � n steps.

The algorithm described above yields a communica-
tion sequence �(k), for k¼ 0, . . . ,N� 1, such that (6) is
controllable on [0,N], for some N< n2. Now, extend
�(k) for k�N by setting �(kþN)¼ �(k). Because A is
invertible, the N-periodic sequence ��(k) will select n
independent columns from

½AjNþN�1B�T
� ð0Þ, . . . ,AjNB�T

� ðjNþN� 1Þ�

in every interval [jN, (jþ 1)N� 1], j¼ 0, 1, 2. . . .
Let l� 2N� 1. For all k� 0, there exists j� 0 such
that [ jN, ( jþ 1)N� 1]� [k, kþ l ]. Therefore, the peri-
odic sequence ��(�) will select n independent columns
on [k, kþ l], for all k, and the extended plant is
controllable under �(�). œ

We note that the communication sequences produced
using Theorem 1 are not optimised for period length,
meaning that our algorithm does not attempt to
identify the shortest-period controllability-preserving
sequence. In practice, however, the algorithm produces
sequences whose period is usually far shorter than the
upper bound kf. By switching from column manipula-
tions to row manipulations, the duality of controll-
ability and observability yields the following result
whose proof is similar to that of Theorem 1.

Theorem 2: Let the pair (A,C) be observable, where C
is p� n and A is invertible. For any integer 1�w�< p,
there exist integers l,N>0 and an N-periodic p-to-w�
communication sequence �(�) such that the system (6) is
observable on [k, kþ l] for all k, and thus observable.

3.1 NCS with stabilisable and detectable plants

Because our objective is LQG control, preserving
the plant’s controllability and observability is more
than is required. In fact, it will be sufficient to
guarantee the weaker properties of stabilisability and

detectability in the NCS. In the following, we describe

how the results of x 3 can be used to do just that.

Definition 6: A discrete-time linear system is called

stabilisable if its uncontrollable subsystem is stable; it

is called detectable if its unreconstructible subsystem is

stable.

Theorem 3: Suppose the pair (A,B) is stabilisable,

where B is n�m, and A invertible. For any integer

1�w�<m, there exist integers l,N>0 and an

N-periodic m-to-w� communication sequence �(�) such

that the NCS (6) is stabilisable.

Proof: Suppose that (A,B) is stabilisable. Then, there

exists an invertible matrix, �, which transforms the

pair (A,B) into its Kalman canonical form:

��1A� ¼
Ac A0c

0 A �c

" #
, ��1B ¼

Bc

0

" #
, ð9Þ

where (Ac,Bc) and ðA �c; 0Þ correspond to the control-

lable and uncontrollable subsystems of the pair (A,B),

respectively. Define the new state variable

z,��1x ¼
zc

z �c

" #
,

so that the dynamics of the extended plant (6) can be

rewritten as

zcðkþ 1Þ

z �cðkþ 1Þ

" #
¼

Ac A0c

0 A �c

" #
zcðkÞ

z �cðkÞ

" #
þ

�BcðkÞ

0

" #
�uðkÞ;

ð10Þ

where we have defined �BcðkÞ,BcðkÞ�
T
� ðkÞ for

convenience. The uncontrollable subsystem A �c is

stable because the pair (A,B) was assumed to be

stabilisable. Note that (Ac,Bc) is controllable, and that

Ac has non-zero eigenvalues because A was assumed to

be invertible. Then, Theorem 1 implies that there exists

a periodic communication sequence �(k) such that the

pair ðAc; �Bcð�ÞÞ is controllable as well. Because the

stabilisability of the extended plant (6) is invariant

under change of coordinates, we conclude that the

same sequence, �(k), must preserve the stabilisability of

the overall NCS, ðA;B�T
� ðkÞÞ. œ

Theorem 4 is dual theorem for detectability.

Theorem 4: Let the pair (A,C) be detectable, where C

is p� n, and A invertible. For any integer 1�w�< p,

there exist integers l,N>0 and an N-periodic p-to-w�
communication sequence �(�) such that the NCS (6) is

detectable.

International Journal of Control 1271
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8 3.2 The case of non-invertible A

If the matrix Ac in (9) (corresponding to the plant’s

controllable subsystem) is not invertible, then the

sequence selection algorithm of Theorem 1 cannot be

used directly to obtain the results of the previous

Section. It is still possible, however, to construct

sequences that preserve the stabilisability and detect-

ability of the NCS by considering only the subspace

that corresponds to the non-zero eigenvalues of A

(or the non-zero eigenvalues of Ac in the proof of

Theorem 3).

Theorem 5: Let the pair (A,B) be stabilisable, where B

is n�m. For any integer 1�w�<m, there exist

integers l,N>0 and an N-periodic m-to-w� commu-

nication sequence �(�) such that the extended plant is

stabilisable.

Proof: The case where A is invertible was addressed

in Theorem 3. Suppose then that A has q (1� q< n)

zero eigenvalues; there exists an invertible matrix, �,

such that

��1A� ¼
A1 0
0 A0

� �
, ��1B ¼

B1

B0

� �
,

where A1 is (n� q)� (n� q) invertible, A0 is q� q with

only zero eigenvalues, B1 is (n� q)�m, and B0 is

q�m. Define the new state variable

z,��1x ¼
z1
z0

� �
,

where z1 2 R
n�q, z0 2 R

q. Then, the dynamics of the

extended plant (6) can be rewritten as

z1ðkþ 1Þ
z0ðkþ 1Þ

� �
¼

A1 0
0 A0

� �
z1ðkÞ
z0ðkÞ

� �
þ

�B1ðkÞ
�B0ðkÞ

� �
�uðkÞ;

ð11Þ

where �B0 ¼ B0�
T
� ðkÞ and �B1ðkÞ ¼ B1�

T
� ðkÞ. In (11),

the extended plant (6) has been decomposed into

two uncoupled subsystems. The controllability

(also reachability, stabilisability) and reconstructibility

(also observability, detectability) of a linear system do

not change under similarity transformations.

Therefore, studying the controllability and reconstruct-

ibility of the extended plant (6) is equivalent to

studying the same properties in (11).
We distinguish between two cases, depending on the

controllability of the pair (A,B). First, if (A,B) is

controllable then (A1,B1) must be controllable as well.

Because A1 is invertible, Theorem 1 implies that there

exists an integer k1>0 and a communication sequence

�(k), for k 2 [0, k1], such that the pair ðA1, �B1ð�ÞÞ is

controllable on [0, k1]. Hence, for any initial condition,

there exists a control �u(k), for k 2 [0, k1], that steers z1

to zero at k¼ k1. Apply the pair �(k), �u(k) during

[0, k1]; for k> k1, set �u(k)¼ 0, and let the commu-

nication sequence �(k) be arbitrary. Then, there must

exist kf> k1, such that z0(kf)¼ 0 because all of A0’s

eigenvalues are zero. Also, z1 must have remained at

zero during [k1þ 1, kf], because �u(k)¼ 0 during that

time. We have thus constructed a control sequence �u(k)

and a communication sequence �(k) on [0, kf] such

that, starting from any initial conditions, the state z is

driven to the origin at time kf. This is equivalent to

stating that (11) is controllable (also, stabilisable) on

[0, kf] under the communication sequence �(k). Now,

we can extend �(�) to be periodic, using the same

argument as in the proof of Theorem 1, and conclude

that the extended plant will be stabilisable under the

same sequence �(k) by the invariance of that property

under change of coordinates.
Finally, if (A,B) is stabilisable but not controllable,

we first transform the pair to its Kalman canonical

form (as in Theorem 3) and then repeat the

previous arguments for the controllable part (Ac,Bc)

of (A,B). œ

The duality of controllability and reconstructibility

gives the following.

Theorem 6: Let the pair (A,C) be detectable, where C

is p� n. For any integer 1�w�< p, there exist integers

l,N>0 and an N-periodic p-to-w� communication

sequence �(�) such that the NCS (6) is detectable.

4. LQG problem formulation and solution

We now return to NCSs in which the plant is

stochastic. Modifying the discussion of x 2 to account

for the presence of sensor and measurement noise in

(1), results in (6) being replaced by the stochastic

extended plant

xðkþ 1Þ ¼ AxðkÞ þ �BðkÞ �uðkÞ þ vðkÞ

�yðkÞ ¼ �CðkÞxðkÞ þ �wðkÞ;

)
ð12Þ

where for convenience we have defined �BðkÞ,B��ðkÞ
T,

�CðkÞ,��ðkÞC, and �wðkÞ,��ðkÞwðkÞ. Having relaxed

the requirement for optimal communication, as per the

discussion in x 3, we now restate the LQG problem.

Problem 2: Given a pair of input and output

sequences (�(�), �(�)) which preserve the stabilisability

and detectability of (1) in the NCS (12), design an

optimal controller that minimises

J ¼ E
XNf

k¼0

xTðkÞQxðkÞ þ �uTðkÞ �uðkÞ

( )
: ð13Þ

1272 D. Hristu-Varsakelis and L. Zhang
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8 Because �(�) is determined off-line and �wðkÞ is a sub-

vector of w(k), the �wðkÞ and v(k) are independent

random variables, with �wðkÞ � Nð0; Iw��w� Þ. Thus,

Problem 2 is a standard LQG problem for the time-
varying stochastic extended plant (12). It is well known

(see, for example, Bertsekas (2000)) that the solution is

comprised of (i) a Kalman filter that produces the

optimal state estimate x̂ðkÞ given the output
�yð0Þ, . . . , �yðkÞ, and (ii) an LQ optimal feedback

controller, �u	ðkÞ ¼ �LðkÞx̂ðkÞ, where the gain, L(k), is

obtained by solving a deterministic LQ problem with

perfect state information. The separation principle

ensures that the two subproblems can be solved

independently.
In the following, we review the analytical expressions

for the Kalman filter and optimal controller; the proofs

of these results can be found in most stochastic control

texts e.g., Bertsekas (2000).

4.1 Kalman filtering

The optimal estimator for the extended plant (12) is the

discrete time Kalman filter, described in two recursive

steps, with x̂ð0Þ ¼ x0, �(0)¼�0. The first is a time

update of the conditional mean x̂ðk�Þ of the state x(k)

prior to the measurement of �yðkÞ,

x̂ðk�Þ ¼ Ax̂ðk� 1Þ þ �Bðk� 1Þ �uðk� 1Þ ð14Þ

PðkÞ ¼ A�ðk� 1ÞAT þ G; ð15Þ

where G is the variance of the noise term v(k) in (6),
and P(k) is the variance of the prediction error. The

second step is a measurement update

HðkÞ ¼ PðkÞ �CTðkÞ �CðkÞPðkÞ �CTðkÞ þ I
� ��1

ð16Þ

x̂ðkÞ ¼ x̂ðk�Þ þHðkÞ �yðkÞ � �CðkÞx̂ðk�Þ
� �

ð17Þ

�ðkÞ ¼ I�HðkÞ �CðkÞ
� �

PðkÞ; ð18Þ

where x̂ðkÞ, EfxðkÞj �yð0Þ � � � �yðkÞg is the state estimate,

and �(k) is the covariance of the estimation error.
The sequence P(kþ 1) satisfies the time-varying

discrete time Riccati equation

Pðkþ 1Þ ¼ APðkÞAT þ G

� APðkÞ �CTðkÞ Iþ �CðkÞPðkÞ �CTðkÞ
� ��1

� �CðkÞPðkÞAT: ð19Þ

The ‘one-step prediction’ error, eðkÞ ¼ xðkÞ � x̂ðk�Þ,

satisfies

Eeðkþ 1Þ ¼ ðA� �ðkÞ �CðkÞÞEeðkÞ; ð20Þ

where G(k),AH(k) is the Kalman gain.

4.2 LQ optimal control

The optimal control law for the LQG problem is
obtained by solving a standard LQ problem for
the deterministic version of (12), assuming that state
feedback is available. The optimal controller is
�u*(k)¼�L(k)x(k), where L(k) satisfies

LðkÞ ¼ �BTKðkþ 1Þ �BðkÞ þ I
� ��1 �BðkÞTKðkþ 1ÞA; ð21Þ

and the symmetric positive semidefinite K(k) satisfy the
backwards Riccati equation

KðNfÞ ¼ Q;

KðkÞ ¼ ATKðkþ 1ÞAþQ

� ATKðkþ 1Þ �BðkÞ �BTðkÞKðkþ 1Þ �BðkÞ þ I
� ��1

� �BTðkÞKðkþ 1ÞA: ð22Þ

The closed loop dynamics for the deterministic state
equation under optimal control are

xðkþ 1Þ ¼ ðA� �BðkÞLðkÞÞxðkÞ: ð23Þ

4.3 Periodic Riccati equations

From x 3, it follows that if the plant (1) is stabilisable
and detectable, it is always possible to design periodic
communication sequences �(�) and �(�) that preserve
those properties in the extended plant (12). Under
periodic communication, �BðkÞ, �CðkÞ are periodic as
well. Therefore, the Riccati equations (19), (22)
associated with the LQG problem both become
Discrete-time Periodic Riccati Equations (DPREs).
DPREs have been studied extensively, e.g., in Bittanti
et al. (1988) and references therein; we go on to review
three of the relevant results from that work.

Definition 7 (Bittanti et al. 1998): A Discrete-time
Periodic Riccati Equation (DPRE) is a difference
equation of the form

Pðkþ 1Þ ¼ AðkÞPðkÞAT
ðkÞ þ BðkÞBðkÞT

�AðkÞPðkÞCTðkÞ½Iþ CðkÞPðkÞCTðkÞ��1

� CðkÞPðkÞAT
ðkÞ; ð24Þ

where A(k) :Z � R
n� n, B(k) :Z � R

n�m, C(k) :
Z � R

p� n are N-periodic.

Theorem 7 (Bittanti et al. 1998,
Theorem 5): Consider the Kalman gain K(k)

KðkÞ ¼ AðkÞPðkÞ CTðkÞðCðkÞPðkÞCTðkÞ þ IÞ�1

associated with any symmetric positive semidefinite
solution P(�) of (24). If (A(�), B(�)) is stabilisable and
(A(�), C(�)) detectable, then the corresponding closed-
loop matrix Âð�Þ ¼ Að�Þ � Kð�ÞCð�Þ is exponentially
stable.

International Journal of Control 1273
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8 Theorem 8 (Bittanti et al. 1998, Theorem 6): There
exists a unique Symmetric Periodic Positive
Semidefinite (SPPS) solution �Pð�Þ of the DPRE (24)
and �̂Að�Þ ¼ Að�Þ � �Kð�ÞCð�Þ is asymptotically stable iff
(A(�), B(�)) is stabilisable and (A(�), C(�)) is detectable,
where �Kð�Þ is the Kalman gain associated with �Pð�Þ.

Theorem 8 gives a necessary and sufficient condition
for the existence and uniqueness of an SPPS solution
as well a stability condition for the closed-loop system.
The next result guarantees the asymptotic convergence
of the DPRE to the unique SPPS solution, as k!1.

Theorem 9 (Bittanti et al. 1998, Theorem 7): Suppose
that (A(�), B(�)) is stabilisable and (A(�), C(�)) detectable.
Then, every symmetric and positive semidefinite solution
of the DPRE (24) converges to the unique SPPS solution
as k!1.

4.4 Convergence of the LQG optimal controller

Theorem 6, combined with the results of x 4.3 implies
the following:

Theorem 10: Suppose that in the NCS (12)

(1) The output communication sequence �(�) is chosen to
be N-periodic and such that the detectability of the
the plant (1) is preserved in the extended plant.

(2) The pair (A, g) is stabilisable, where ggT¼G.

Then, starting from any positive definite initial condi-
tions, (19) converges to a unique N-periodic solution,
��ðkÞ, as k!1. Moreover, the error dynamics (20) are
exponentially stable.

The theorem follows by making the identifications
A!A, B! g, C!C, P!P, and K!AH in
Theorems 7–9. The next result is obtained in a similar
fashion.

Theorem 11: Suppose that in the NCS (12),

(1) The input communication sequence �(�) is N-periodic
and such that the stabilisability of the the plant (1) is
preserved in the extended plant.

(2) The pair (A, qT) is detectable, where qqT¼Q.

Then, starting from any positive definite initial condi-
tions, the Riccati equation associated with the LQ
problem (22) converges to a unique N-periodic solution
�KðkÞ as k!1.Moreover, the closed loop dynamics (23)
are exponentially stable.

5. When transmission delays are present

We now consider NCSs where in addition to the
medium access constraints discussed up to now,
controller-plant communication is also subject to

known transmission delays. In the remainder of this
section we outline a delay-compensation method which
is inspired by Luck and Ray (1990), and can be
combined with the LQG controller and communica-
tion sequences developed previously. A starting point
for the treatment of random delays in this context
could be Lincoln and Bernhardsson (2000b), Wang
et al. (2003) and Chan and Ozguner (1995).

5.1 Continuous-time plants: reduction to the
discrete-time case

If the underlying plant evolves in discrete time, then
one can simply amend the NCS model (12) to include
any (integer) delays. We will take the plant-to-
controller and controller-to-plant delays to be
�1,�2>0, respectively:

xðkþ 1Þ ¼ AxðkÞ þ �Bðk��2Þ �uðk��2Þ þ vðkÞ

�yðkÞ ¼ �Cðk��1Þxðk��1Þ þ �wðk��1Þ,

)

ð25Þ

If, on the other hand, the plant evolves in continuous
time, we will require that its output is sampled
periodically, with period T>0, and will take the
triple (A,B,C) to be the parameters of the resulting
sampled-data system. Upon receipt of a set of output
data, �y (Figure 2), the controller computes and
transmits a control �u, which will reach the plant �cp
time units later. We will assume that the controller
computes inputs instantaneously; if that is not the
case, the analysis that follows must be modified by
increasing �cp to include the time needed to compute
an input. Unless �cpþ �pc is a multiple of the sampling
period T, an input will arrive at the plant ‘between’
samplings (see Figure 3). It will be convenient to

Figure 3. NCS with continuous-time plant and delays.

Plant outputs are sampled periodically and arrive at the

controller �cp time units after transmission. The controller

computes and transmits �u(k��2), which arrives at the plant

with a delay of �cp, and is applied at the next sampling

instant, �2 periods following transmission. Here,

�2¼d�cp/Te and �¼d(�cpþ �pc)/Te.

1274 D. Hristu-Varsakelis and L. Zhang
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8 arrange matters so that input data arriving during

(kT, kTþT] will be ‘buffered’ at the plant’s input

stage and will be applied to the actuators at the next

sampling instant, kTþT. This assumption can easily

be lifted, but we will make use of it here because it

allows us to simplify matters by reducing the case of a

continuous-time plant to the discrete-time model (25).

An alternative is to require that incoming inputs are

applied immediately, without waiting for the next

sampling instant. Taking into account the intersample

behaviour of the plant when control inputs are

applied upon arrival is straightforward and requires

adjusting the predictor equations that are given next,

in order to correctly estimate the plant state at the

time of arrival of a control input. The modifications

are in the spirit of what is described in Zhang et al.

(2001) and will be omitted.
For an NCS with continuous-time plant, we will

label quantities as follows. Let u(k) denote the input

that arrived at the plant some time in (kT, kTþT],

while x(k) and y(k) will be the samples of the state and

output, respectively, at t¼ kT. Likewise, �yðkÞ will be

the output data that arrived at the controller during

(kT, kTþT]. Inputs produced by the controller will be

indexed by the time interval in which they were

computed, i.e., �u(k) will be the input produced by the

controller during (kT, kTþT]. Because plant inputs

are buffered and outputs are sampled periodically, the

controller will generate precisely one such input per

sampling interval. The output received by the con-

troller will then be related to the ‘true’ output by

�yðkÞ ¼ ��ðk��1Þyðk��1Þ;

where �1 ¼ d�pc=T e, and �� is as per Def. 2, while the

input received by the plant is related to that which the

controller generates by

uðkÞ ¼ �T
� ðk��2Þ �uðk��2Þ;

where �2 ¼ d�pc=T e. The resulting stochastic extended

plant has precisely the same expression as (25), subject

to the interpretation of the various signals as indicated

above.

5.2 Delay compensation

For each time k, we will construct a family of

predictors, whose states x̂ðk, iÞ are the estimates of

the plant’s ‘true’ state x(k��1þ i). These predictors

are to be updated by the controller each time it receives

new data from the plant.

. We begin by modifying the Kalman filter

equations, using data which was transmitted to the

controller �1 time steps (resp. sampling periods) in

the past:

x̂ðk�, 1Þ ¼ Ax̂ðk� 1, 1Þ þ �Bðk��� 1Þ �uðk��� 1Þ,

x̂ð0�, 1Þ ¼ x0

x̂ðk, 1Þ ¼ x̂ðk�, 1Þ þHðkÞ �yðkÞ � �Cðk��1Þx̂ðk
�, 1Þ

� �
,

ð26Þ

where �¼�1þ�2 and the gain H(k) is as in x 4.1.
. The estimate x̂ðk�, 1Þ is then propagated forward in

time, in order to estimate the state at the time the

controller’s currently-generated output �u(k) is to

reach the plant:

x̂ðk�, jþ 1Þ ¼ Ax̂ðk�, jÞ þ �Bðk��� 1þ jÞ

� �uðk��� 1þ jÞ, j ¼ 1, . . . ,� ð27Þ

. The estimate x̂ðk�,�þ 1Þ of the future state

x(kþ�2) is then used in place of state feedback:

�uðkÞ ¼ LðkÞx̂ðk�,�þ 1Þ: ð28Þ

When applying the delay compensator (26)–(28), we

will choose to forgo the measurement update in (26)

for the first �1 time steps, and instead rely only

on prediction until the controller receives the first set of

output data.

5.3 Closed loop dynamics with medium
access constraints and delays

Theorem 12: For the NCS (6) and predictor (27),

define the estimation error to be

eðkÞ, xðk��1Þ � x̂ðk�, 1Þ: ð29Þ

Under the feedback controller (28), the closed loop

dynamics of (25) satisfy

Exðkþ 1Þ

Eeðk��2 þ 2Þ

" #
¼ AðkÞ

ExðkÞ

Eeðk��2 þ 1Þ

" #
, ð30Þ

where

AðkÞ,
Aþ �Bðk��2ÞLðk��2Þ VðkÞ

0 A� �ðk��2 þ 1Þ �Cðk��þ 1Þ

2
64

3
75, ð31Þ

International Journal of Control 1275
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8 and V(k) is a matrix that depends on the (finite) time

histories of �B; �C;H and L.

Before we prove Theorem 12, we will need the

following intermediate result whose proof can be

found in the Appendix.

Lemma 1: For all k¼ 1, 2, . . . , and r¼ 1, 2, . . . ,

Ex̂ðk�, rþ 1Þ

¼ Ex̂ðkþ r�, 1Þ � A
Xr�1
i¼0

AiHðkþ r� i� 1Þ

� �Cðkþ r� i� 1��1ÞEeðkþ r� i� 1Þ: ð32Þ

Proof of Theorem 12: From the definition of

the estimation error (29) and the observer

dynamics (26), it is easy to verify that

Eeðkþ 1Þ ¼ ðAþ AHðkÞ �Cðk��1ÞÞEeðkÞ or, using

�(k),AH(k),

Eeðkþ 1Þ ¼ ðA� �ðkÞ �Cðk��1ÞÞEeðkÞ; ð33Þ

which establishes (after time-shifting by �2� 1 steps)

the lower-right block of A(k) in (31).
Under the feedback law (28), the NCS evolves

according to

xðkþ 1Þ ¼ AxðkÞ þ �Bðk��2Þ �uðk��2Þ þ vðkÞ

¼ AxðkÞ þ �Bðk��2ÞLðk��2Þ

� x̂ðk���2 ,�þ 1Þ þ vðkÞ: ð34Þ

Using Lemma 1, the last equation yields

Exðkþ1Þ ¼AExðkÞþ �Bðk��2ÞLðk��2Þ

�

�
x̂ðkþ��1 ,1Þ�A

X��2
i¼0

AiHðkþ��2� iÞ

� �Cðkþ��2� i��1ÞEeðkþ��2� iÞ

�
ð35Þ

By adding and subtracting the term �Bðk��2Þ�

Lðk��2ÞExðkÞ from the right-hand side of the last

equation, we obtain

Exðkþ 1Þ ¼ ðAþ �Bðk��2ÞLðk��2ÞÞExðkÞ

� �Bðk��2ÞLðk��2ÞEeðkþ�1Þ

þ terms involving Eeðkþ�� 2Þ, . . . , Eeðkþ 1Þ,

EeðkÞ: ð36Þ

By expressing Ee(kþ�� i� 2) in terms of

Ee(k��2þ 1) by means of (33), we have

Exðkþ 1Þ ¼ ðAþ �Bðk��2ÞLðk��2ÞÞExðkÞ

� �Bðk��2ÞLðk��2ÞEeðkþ�1Þ

�
X��2
i¼0

 
AiHðkþ�1 � 1� iÞ �Cðk� i� 1Þ

�
Ykþ�1

j¼k��2þ2

WðjÞEeðk��2 þ 1Þ

!
, ð37Þ

where WðjÞ,A� �ðjÞ �Cðj��1Þ:
To obtain the top row of (30)–(31) we again

express Ee(kþ�1) in terms of Ee(k��2þ 1) in (37),

and define V(k) to be the sum of all factors that

multiply Ee(k��2þ 1) in the resulting equation for

Ex(kþ 1). œ

Equation (31) suggests that in order to apply the LQG

controller of x 4 to the case where delays are imposed,

the observer gain sequence, H(�), should be time-

shifted by �1 steps, while the controller gains L(�)

should be unchanged.

6. A numerical example

To illustrate our approach, we simulated the 3-input,

3-output, 6th order unstable LTI plant with

parameters

A ¼

1:1 0 0 0 0 0

�1:5 0 �0:75 �1:5 0:75 �0:75

�1:1 0 0 �1:1 0 0

0 0 0 1:1 0 0

1:1 0:75 0 1:1 0 �0:75

�0:75 0 �0:75 �0:75 0 �0:75

2
6666666664

3
7777777775

B ¼

1 0 1

1 �1 0

�1 1 0

0 0 �1

1 0 1

0 �1 0

2
6666666664

3
7777777775
,

and

C ¼

1 0 1 0 0 0

0 1 0 0 1 �1

0 0 0 �1 0 0

2
664

3
775:
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8 The disturbance terms in (1) were

v(�)�N(0, 0.35I6�6) and w(�)�N(0,I3�3). We formu-

lated an infinite-horizon version of the LQG

problem (Problem 2 in x 4), with Q¼ 4I6�6 and

initial conditions x(0)¼ [1, 50, 7, 6, 1, 2]T, x̂ð0Þ ¼ 0,

and �(0)¼ 0.2 � I6�6. The choice of an infinite

horizon meant that the steady-state SPPS solutions

to the Riccati equations (19) and (25) were required

in order to determine the controller and observer

gains, and that we only needed to store as many

gains as the communication sequence period at run

time. The plant was controlled through a shared

communication medium which had only one input

and one output channels, i.e., w�¼w�¼ 1.
The plant’s Kalman decomposition reveals that

the plant is indeed stabilisable and detectable, with

a 1-dimensional stable controllable/unobservable

subsystem, a 4-dimensional unstable controllable/

observable subsystem, and a 1-dimensional stable

uncontrollable/observable subsystem. The proof of

Theorems 3 and 5 indicates that in order to obtain a

communication sequence that maintains stabilisability

(detectability) in the presence of communication

constraints, it is sufficient to identify the sequence

that does the job for the controllable (reconstructible)

part of the plant. Using the algorithm contained in the

proof of Theorem 1, we found that the period-3

sequences

f�ð0Þ; �ð1Þ, . . . , g ¼ f½1; 0; 0�T; ½0; 1; 0�T; ½0; 1; 0�T, . . . , g;

f�ð0Þ; �ð1Þ, . . . , g ¼ f½1; 0; 0�T; ½1; 0; 0�T; ½0; 0; 1�T, . . . , g;

preserve the controllability and reconstructibility

of the 4-dimensional unstable subsystem, and thus

guarantee that the NCS is stabilisable and detectable,

so that we can construct the stabilising LQG controller

of x 4. It is interesting to note that in this case,

the ‘round-robin’ policies �(k)¼ �(k)¼ {[1, 0, 0]T,

[0, 1, 0]T, [0, 0, 1]T, . . .} do not result in a stabilisable

or detectable system.
In the first of two simulations, we took the

communication medium to be delay-free (�pc¼ �cp¼ 0).

The solution of the periodic Riccati equation (19),

associated with the Kalman filter error covariance,

converged to a 3-periodic SPPS solution �Pð�Þ in

approximately 20 steps. The same was the case for

the solution of the periodic backwards Riccati equa-

tion (22), associated with the LQ optimal gain. The

evolutions of tr(P(k)) and tr(K(k)) are shown in

Figure 4. Using the solutions for P(�) and K(�), the

Kalman filter and the LQ optimal feedback gain were

computed from the formulae in x 4.1, 4.2. The observer

and controller gains were

�Hð3iÞ ¼

0:3862

0:1117

0:2541

�0:5684

�0:1748

0:0404

2
666666664

3
777777775
, �Hð3iþ 1Þ ¼

0:5213

�0:0253

�0:6189

0:0976

0:6204

�0:0347

2
666666664

3
777777775
,

�Hð3iþ 2Þ ¼

0:4236

�0:0334

�0:5382

0:1146

0:5232

�0:0540

2
666666664

3
777777775
,

�Lð3iÞ ¼

�
0:3107 � 0:0410 � 0:2250;

� 0:0532 0:2146 � 0:184

�
,

0 20 40 60 80 100
20

40

60

80

100

120

140

k

tr
(K

(k
))

0 20 40 60 80 100
0

2

4

6

8

10

12

k

tr
(P

(k
))

Figure 4. Evolution of tr(P(k)) and tr(K(k)). The P(k)

satisfy the Riccati equation (19)), while K(k) satisfy the

backwards Riccati equation (25).
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�Lð3iþ 1Þ ¼

�
0:7138 0:0854 � 0:0564

0:6997 0:1226 � 0:1418

�
,

�Lð3iþ 2Þ ¼

�
0:2707 0:082 0:003 � 0:6824

� 0:0588 � 0:079

�
, ð38Þ

where i¼ 0, 1, 2, . . . .
The state evolution of the closed-loop system under

optimal control is shown in Figure 5. For the sample

path shown there, all states entered a small ‘band’

around the origin after about 20 steps. The evolution

of the Kalman filter’s one-step prediction error, e(k),

is shown in Figure 6.
Next, we simulated the same NCS, starting from

the same initial conditions, this time with a

controller-to-plant delay of �2¼ 3 time steps and a
plant-to-controller delay of �1¼ 2 time steps, in
addition to the access constraints w�¼w�¼ 1. The
observer/predictor from x 5.3 were used in order to
compensate for the effects of transmission delays, and
the gain sequences from the delay-free case
were applied. The plant’s state evolution is
shown in Figure 7. The predictor error
epðkÞ, xðkÞ � x̂ðk,�1 þ 1Þ is shown in Figure 8.

7. Conclusions

We presented an LQG design method for NCSs which
are subject to medium access constraints and known
delays. Our approach forgoes the use of ZOH
elements in the loop; instead, the controller and plant
‘ignore’ sensors and actuators which are not granted
medium access. The selection of communication
sequences is decoupled from the choice of controller
by relaxing the requirement for jointly optimal
control and communication, thereby simplifying the
identification of useful communication patterns and
allowing us to bring existing tools to bear. Specifically,
we showed that it is always possible to design periodic
communication sequences that preserve the detectabil-
ity and stabilisability of the underlying plant in the
presence of communication constraints. Having doing
so, Kalman filtering and LQ optimal control of an
NCS can be formulated as a standard LQG problem
for an equivalent periodic time-varying system. Our
choice of communication sequences ensures that the
Riccati equations associated with the Kalman filter
and the LQ optimal gain both converge (for infinite-
horizon problems) to periodic solutions regardless of
initial conditions. Thus, the associated stabilising
optimal LQG controller can be easily implemented.

0 10 20 30 40 50 60
−30

−20

−10

0

10

20

30

40

50

k

X
(k

)

x1(k)
x2(k)
x3(k)
x4(k)
x5(k)
x6(k)

Figure 5. State evolution of the closed-loop NCS under the

LQG controller. Delay-free case.

0 10 20 30 40 50 60
−30

−20
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0

10

20

30

40

50

k

e(
k)

e1(k)
e2(k)
e3(k)
e4(k)
e5(k)
e6(k)

Figure 6. Evolution of Kalman filter’s one-step prediction

error eðkÞ ¼ xðkÞ � x̂ðk�Þ. Delay-free case.
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Figure 7. State evolution of the closed-loop NCS under the

LQG controller, with transmission delays �1¼ 2, �2¼ 3.
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The proposed approach to LQG control of NCS is
comprised of three components:

. A pair of periodic communication sequences which
are designed off-line, independently of the controller.
Periodic communication sequences can be easily
implemented via MAC-level network protocols such
as polling, token passing, or time division multiple
access (TDMA).

. A periodic time-varying linear controller whose
parameters can be computed off-line.

. A delay compensator which is implemented at the
controller.

Our method does not address the joint optimisation of
the controller and the communication sequences, a
problem which currently appears to be intractable.
Using the notion of a communication sequence as a
basic modelling tool, one can consider extensions of
this work to NCSs which are subject to ‘dropped’ data
packets and random delays, in addition to the
constraints discussed here.

Note

1. A discrete-time communication sequence �(�) will be
called N-periodic if �(k)¼ �(kþN) for all k.

Appendix

Proof of Lemma 1: The statement is proved by induction.

First, we verify that the statement holds for r¼ 1. From the
observer equations (26) we have

Ex̂ðkþ 1�, 1Þ

¼ AEx̂ðk�, 1Þ þ �Bðk��Þ �uðk��Þ þ AHðkÞ �Cðk��1Þ

� ðxðk��1Þ � x̂ðk�, 1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
EeðkÞ

, ð39Þ

while the predictor (27) implies that

Ex̂ðk�, 2Þ ¼ AEx̂ðk�, 1Þ þ �Bðk��Þ �uðk��Þ:

Combining the last two equations, we obtain

Ex̂ðk�, 2Þ ¼ Ex̂ðkþ 1�, 1Þ � AHðkÞ �Cðk��1ÞEeðkÞ:

One can also verify (again using (26) and (27)) that the
statement holds for r¼ 2. Assuming now that (32) holds (for

an index of rþ 1), we show that it also holds for index rþ 2.
From (26) we have that

x̂ðkþ rþ 1�, 1Þ

¼ Ax̂ðkþ r; 1Þ þ �Bðkþ r��Þ �uðkþ r��Þ

¼ AEx̂ðkþ r�, 1Þ þ �Bðkþ r��Þ �uðkþ r��Þ

þ AHðkþ rÞ



�Cðkþ r�1Þxðkþ r��1Þ

þ �wðkþ r��1Þ � �Cðkþ r��1Þx̂ðkþ r�, 1Þ
�

) Ex̂ðkþ rþ 1�, 1Þ

¼ AEx̂ðkþ r�, 1Þ þ �Bðkþ r��Þ �uðkþ r��Þ

þ AHðkþ rÞ �Cðkþ r��1ÞEeðkþ rÞ, ð40Þ

while (27) implies that

x̂ðk�, rþ 2Þ ¼ Ax̂ðk�, rþ 1Þ þ �Bðk��þ rÞ �uðk��þ rÞ:

ð41Þ

Using our hypothesis that (32) holds, the last equation yields

Ex̂ðk�, rþ 2Þ

¼ AEx̂ðkþ r�, 1Þ � A
Xr�1
i¼0

AiHðkþ r� i� 1Þ

� �Cðkþ r� i� 1��1ÞEeðkþ r� i� 1Þ

þ �Bðk��þ rÞ �uðk��þ rÞ: ð42Þ

By comparing (40) and (42), we obtain the desired result:

Ex̂ðk�, rþ 2Þ

¼ Ex̂ðkþ rþ 1; 1Þ � AHðkþ rÞ �Cðkþ r��1ÞEeðkþ rÞ

� A
Xr�1
i¼0



Aiþ1Hðkþ r� 1� iÞ �Cðkþ r� 1� i��1Þ

� Eeðkþ r� 1� iÞ
�

¼ Ex̂ðkþ rþ 1, 1Þ � A
Xr
i¼0



AiHðkþ r� iÞ

�Ckþ r� i��1ÞEeðkþ r� iÞ
�
: ð43Þ

œ
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