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A b s t r a c t  

This work considers the use of abstract descriptions 
of motion control programs and of the environment, 
and explores some new problems of system theoretic 
interest that  arise as a result. We study the prob- 
lem of active localization for a mobile robot moving on 
a sparsely-described uncertain environment and show 
how that problem can be posed as that of observability 
of a finite automaton. We present algorithms (based 
on Hidden Markov Models) that answer the question 
of i) whether or not a representation of the environment 
(in the form of a directed graph) is observable, and ii) 
what is the shortest navigation policy that  allows the 
robot to uniquely identify its location on the graph. 

1 I n t r o d u c t i o n  

One aspect of control systems science that sets it apart 
from other disciplines is its reliance on a sometimes del- 
icate balance between problem formulations that are 
sufficiently narrowly defined to be solvable, yet general 
enough to be of practical significance. In robotics, one 
of the main challenges has to do with the complexity of 
the control programs that are needed to guide a robot 
through even a moderately complicated task. To avoid 
always having to design at the level of the actuators, 
it is natural to at tempt to "tokenize" control inputs 
into primitives that  can be hierarchically composed 
into control programs of higher complexity, similarly 
to the object-oriented programming paradigm. A for- 
mal framework for doing just that  has been established 
in the work on motion description languages (MDLs) 
over the last decade [3, 13, 17]. Briefly, the idea be- 
hind MDLs is to control the evolution of a continuous- 
time system by symbolic commands that are eventu- 
ally interpreted down to feedback laws. The lowest- 
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level primitives (also known as "atoms") are ordered 
triples of the form (u,k,~),  characterized by an open- 
loop control signal, u, a closed-loop mapping, k, that  
maps state and environment observations to a control 
action, as well as an interrupt function, ~, that  spec- 
ifies the duration (temporally as well as spatially) of 
the atom. Atoms, together with simple rules of com- 
position, can be used to write control "programs" that 
in principle could be machine-independent (see [3] for 
a full description of the syntax and definition of MDL; 
[12, 17] describe its "extended" counterpart, MDLe). 

This paper continues the development of ideas related 
to language-based descriptions of control tasks and 
some of their implications for autonomous robot navi- 
gation. In particular, we are interested in an abstract 
description of the environment [13], in the same manner 
that  MDL strings offer an abstract description of con- 
trol laws. Although such descriptions are appealing for 
the reasons outlined above, they give rise to new control 
problems of higher complexity, because one now oper- 
ates on a space of primitives (themselves composed of 
yet simpler primitives) as opposed to the spaces of in- 
put and output signals to and from the underlying dy- 
namical system. It is exactly one such "meta"-problem 
that  we would like to explore here, namely the problem 
of when (and by what actions) it is possible for a mobile 
robot to localize itself in its environment (represented 
as a "web" of landmarks together with instructions for 
getting from one to another). For other treatments of 
such "meta"-problems in robot control, see for example 
[9, 14, 19]. 

The paper is structured as follows: In Section 2 we 
formulate the main problem and show how it is related 
to the notion of observability. We then, in Section 3, 
reformulate the problem as a Hidden Markov Model 
problem; an algorithmic solution is presented in Section 
4, along with a discussion of some natural extensions 
of this work, currently in progress. 



2 Mot ion  Descr ipt ion  Languages  and Ro b o t  
Navigat ion  on Graphs 

For the purposes of this work, we consider a mobile 
robot, navigating in a partially known environment, 
which need not be structured.  The environment is 
represented not as a contiguous map, but rather  as 
a series of landmarks,  representing areas of the world 
tha t  are deemed "interesting" or "relevant" (for work 
related to graph-based representations of the environ- 
ment see [7, 16, 15]; for recent work combining MDLs 
and landmark-based navigation see [13]). 

We assume tha t  once the robot is within sensory range 
of a landmark it can drive towards or around tha t  land- 
mark  using a feedback control strategy. Furthermore,  
the robot can move between the different regions of 
a t t ract ion around the landmarks using a fixed num- 
ber of control strategies which are coded as "words" 
in a motion description language (e.g. [13]). These 
MDL programs serve as instructions for driving the 
robot between established landmarks,  even though fail- 
ure to reach a given landmark is still possible due to 
temporal  or spatial environment uncertainty. We note 
tha t  MDL programs are used to describe geographical 
relationships not  in t e rms  of where a location is, but 
what  one m u s t  do to get there. This gives rise to a di- 
rected graph, whose vertices xi, i = 1, ..., n correspond 
to landmarks and whose edges eij correspond to the 
existence of a control program that  drives the robot be- 
tween the regions of a t t ract ion around xi and x j .  The 
aim is to replace-  when possible - the details of a map 
by a feedback program. We remark tha t  transit ions 
between landmark need not be deterministic, i.e. exe- 
cuting the instructions in eij from xi may not always 
lead to x j .  This allows one to bring uncertainty into 
the fold, in the form of a set of probability-preserving 
maps from the set of probability density functions de- 
fined on Xl,..., xn, to itself. This idea will be explored 
in Section 5. 

Under the scenario described above, the main question 
this paper is concerned with is tha t  of observability: 
Given tha t  the robot starts  out at a part icular land- 
mark  of type y, how should the robot move around in 
the environment in order to recover its current position 
(i.e. the current node in the reachability graph). This 
question is closely related to tha t  of observability for 
finite automata ,  as defined in [5] 1 , and in this paper 
we derive an algorithm for determining whether or not 
a given au tomaton  is observable, using the Viterbi al- 
gori thm (see for example [8]) for Hidden Markov Mod- 
els (HMMs). Because the transitions between different 
nodes will have a probability of success associated with 
them, we will also produce an algorithm that  generates 

1This concept of observability differs from that in [1], where 
observability is defined with respect to any input sequence. 

the probability of recovering the state of the system. 

2.1 Prel iminaries  
We will choose to describe the continuous-time dynam- 
ics of the robot by i - F ( z , v ) ,  w - H ( z ) ,  where 
z C Z C ~n is the state of the system, w C W C ~P 
is the observation made by the robot, and v C V C ~k 
is the input to the system. As already discussed in the 
introduction, we let the symbolic inputs be triples of 
the form (v,k,~) ,  where v c V is the open-loop com- 
ponent, k • W -+ V is the feedback mapping, and 

• W --+ {0, 1 } is the interrupt.  A string of such input- 
triples is operated on by the dynamic system as 

-- F(Z ,  k l (W,  Vl)); to < t < T1 

- F ( z ,  kq(w,  Vq)); Tq-1 < t ( Tq, 

where Ti denotes the time at which the interrupt  [i 
changes from 0 to 1. 

Now, assume tha t  the robot is moving around in a 
partially s t ructured environment, populated by a fixed 
number of landmarks.  Let X denote the set of these 
landmarks,  and assume furthermore tha t  tha t  each 
landmark x C X is of a part icular type y c Y, where 
Y is the finite set of possible landmark types, such as 
"door", "stairs", "hall", etc. 

We now note tha t  if we use a part icular input (v, k, ~) 
for moving the robot between two landmarks,  we can 
abstract  away the continuous dynamics of the system, 
as long as we know that  this is a successful control pol- 
icy. (We will see later on tha t  only a given probability 
of success is needed for this construction to be mean- 
ingful.) At this level of abstraction, the evolution of 
the robot can thus be defined by a finite au tomaton  
(X, Y, U, f ,  h), where U is the finite set of control ac- 
tions, f : X  x U --+ X,  and h : X  --+ Y. The evolution 
of the au tomaton  is given by Xk+l = f ( x k , u k ) ,  Yk = 
h (xk ) .  

2 . 2 0 b s e r v a b i l i t y  and Reachabi l i ty  on Graphs 
Given tha t  the robot starts  out at a landmark of type 
Y0, how should it move around in the environment in 
order to figure out where it is? In other words, we 
want to construct an optimal policy Try 0 : Y --+ U in 
such a way tha t  we know exactly where we are after a 
minimum number of steps, given tha t  the robot starts  
at any x0 C h - l (y0) .  

This problem, is related to the concept of observability 
for finite state machines, as defined in [5]" Consider 
the finite au tomaton  (X, Y, U, f ,  h). We let the output  
sequence map (9" Z + x X x U Y -~ Y *  be given as 

O ( q , x ,  Tr) -- h ( x l ) -  h(x2)  " " h(xq) ,  

where 7r • Y -+ U, and Xl - x, x2 : 
f ( x l , " z ( h ( X l ) ) ) , . . . ,  X q -  f ( X q _ l , " z ( h ( X q _ l ) ) ) .  Note 



tha t  in the output  sequence map y l " y 2  denotes the 
concatenation of the letters yl and y2 from the finite 
alphabet  Y, and O(q , x ,  Tr) C Yq C Y*, where YP is 
the set of words of length p over Y, and Y* is the free 
monoid over Y. 

Wha t  we want to do is to establish conditions for when 
it is possible to reconstruct the state of the system, 
and we note tha t  this is possible if there exists q, 7r, 
such tha t  O(q, x, 7r) is injective in its second argument.  
It should be noted tha t  this is in fact only a sufficient 
condition since injectivity of the output-sequence map 
implies tha t  we can reconstruct not only the current 
state but also all previous states, including the initial 
s tate as long as we know the system dynamics. How- 
ever, to be able to reconstruct the current state does 
not imply tha t  we can recover the previous states due 
to the lack of backward uniqueness for discrete event 
systems [4]. 

D e f i n i t i o n  2.1 (Observability) A f inite au tomaton  
(X, Y, U, f ,  h) is observable if  there exist a positive inte- 
ger qobs and an output- to- input  mapping Uobs : Y -+ U 
that satisfies (-9(qobs,Xl, 7robs) ¢ (-9(qobs,X2, 7robs) for  all 
Xl , X2 C X ,  Xl ¢ x2. 

It is clear tha t  this definition does not provide us with 
a constructive method for determining if a given finite 
au tomaton  is in fact observable, and in the remainder 
of this paper we investigate the following two questions: 

P r o b l e m  2.1 (Observabil ity)  Given 
tomaton,  determine if it is observable? 

a f inite au- 

P r o b l e m  2.2 (Recoverabil i ty)  Given an observable 
f inite automaton,  and an initial state xo c h - l (yO),  
f ind the optimal policy Try o that min imizes  the number  
of steps required in order to specify the current state of 
the sys tem exactly. 

We note already at this point tha t  if we have a con- 
structive method for finding the smallest q, and a cor- 
responding 7r tha t  renders the output  sequence map 
injective, then we also have found an upper bound on 
the minimum number of steps we need to take from 
any state in order to recover the state of the system. 

3 Hidden  Markov Mode l s  

A natural  way of thinking about  the state- 
recoverability questions of interest is in terms of beliefs, 
i.e. how likely is it tha t  we are at a particular state, 
given a string of observed landmarks.  We will thus 
be working with beliefs, distr ibuted over the different 

states, which makes it very natural  to cast the problem 
as a Hidden Markov Model problem. 

Let the probability tha t  we are at a part icular state xi 
at t ime k be given by 

p (k) -P(x(k) 

and form the distribution vector p(k) = 
(Pl ( k ) , . . .  ,pn(~))  T, where c a r d ( X )  - n. If we 
commit ourselves to using a given policy 7r • Y -+ U, 
the evolution of these probabilities is given by 
p(k  + 1) - A~p(k) ,  where A t  - [aij,~]ij is the 
transit ion matr ix  associated with policy 7r formed by 

aij,~ - P ( x ( k  + 1) - xi I x ( k )  - x j ,  uk -- 7r(h(xk))).  

If the system is at state x, we furthermore make the 
observation y -  h(x), i.e. if we set 

bij - P ( y  - yi I x - x j  ), 

we can form the observation matr ix  B - [bij], and get 
the linear observation relation q(k) - Bp (k ) ,  where 

qi(k) - P ( y ( k )  - Yi), i - 1, . . . , m,  

with ca rd (Y )  - m.  

Even though our transitions and observations are de- 
terministic (i.e. B only contains zeros and ones), our fi- 
nite au tomaton  can be cast as a Hidden Markov Model 
under a fixed policy, which allows us to draw on the 
rich l i terature on HMMs. If we assume tha t  we tra- 
verse the state space of the automaton,  using the policy 
7r, then during q steps we observe the landmark types 
y ( 1 ) , y ( 2 ) , . . . , y ( q ) .  If we form the single observation 
matr ix  B(yk )  = diag(bk,1, bk ,2 , . . . ,  bk,n), associated 
with the observation ya, and let 7 = ( 1 / n , . . . ,  1 /n )  T, 
then the forward sweep algorithm (see for exam- 
ple [8]) tells us tha t  the conditional density vector 
i@w(y(1) ,  y ( 2 ) , . . . ,  y(q)), defined as 

I P(x (q )  - Xl [ y ( 1 ) , . . . ,  y(q), 7) 

) 
P(x(q )  - xn I i (1) ,  , Y(q), 7) 

is given by 

(y(1) ,  y ( 2 ) , . . . ,  y(q))  - 
_ _  1 B ( y ( q ) ) A ~ B ( y ( q  1))A~ A ~ B ( y ( 1 ) ) 7  
- -  J ~ q  . . . .  , 

where Nq is a normalization factor. 

The problem concerning the reconstruction of the cur- 
rent state, given a part icular policy 7r, is thus equivalent 
to tha t  of determining if iS~w is a unit vector after a 
given number of steps, i.e. if I li5~w[l~ - 1. Tha t  this 
is the case follows directly from the fact tha t  only then 



do we know, for certain, exactly what the current state 
of the system is. The problem of observability (recov- 
ering all the previous states of the system), can also be 
cast on a similar form using the Viterbi algorithm for 
HMMs: 

1(1 1 1) T rl---~ , , . . . ,  
~FW, i(k) -- P ( x ( k )  - xi I y(1), y ( 2 ) , . . . ,  y(k))  
P~BW, i(k) -- P ( x ( k )  - xi l y (k  + 1),y(k + 2 ) , . . . , y ( m ) )  
P~Fw(k) -- -~--~B(y(k))A. . . AB(y(1))r~ 
P~BW(k ) _ 1 f t B ( y ( k  + 1))~i f t B ( y ( m ) ) v  
ft  - -  A TD,  where D is a diagonal normalization matrix 
~-(]g) __ 1 -Tr 

~ P F w  ® P ~ w  , 

where ® denotes component-wise product.  

Our findings thus far can be summarized as follows- 

• Observability after m steps ¢~ 
1 , k -  1 , . . . , m  

• Recoverability after m steps ¢~ lllS~w(rn)ll~ - 1 

4 D e c i d i n g  O b s e r v a b i l i t y  a n d  Related Control 
Pol ic ies  

We can thus answer the questions posed in Problems 
2.1 and 2.2 by computing the conditional densities as- 
sociated with every policy starting from every state 
(landmark). One issue that  needs to be resolved has to 
do with when to terminate the iterations. As a conse- 
quence of the Pidgeon Hole Principle (see for example 
[10] for an accessible t reatment  of this classic result) 
we can obtain such a bound, and we state this fact as 
a lemma: 

L e m m a  4.1 ( I t e r a t i o n  B o u n d s )  I f  the automaton 
A is observable then it is observable in card (X)  steps, 
i.e. if O(q, Tr,.) is injective for some (Tr, q) then it is 
injective for (Tr, card(X) )  as well. 

In other words, observability can be determined by de- 
ciding if the following optimization problem has a so- 
lution: 

min .,n}{q } 
7rEUY ,qE{0,1,.. 

subject to the injectivity constraint 

O(q, Xl, 7r) # O(q, x2,7r), VXl # x2 6 X .  

The constraint can furthermore be reformulated as 

I I~ (h (x (O,x ,  7r)), h ( x ( 1 , x ,  7r)), . . . , h ( x (q , x ,  ¢)))l l~ = 1, 

which has to hold Vx 6 X,  where we use x ( k , x ,  7r) as 
shorthand for 

x(0,  x, ~) = x 
x ( k , x ,  7r) = f ( x ( k  - 1,x,  7r), 7r(h(x(k - 1,x ,  7r))) 

k =  1 , 2 , . . .  

A straight forward way to solve the last problem is 
to iterate over all policies, and then compute the con- 
ditional densities from each initial state over a max- 
imum of card(X)  steps. Since we are multiplying 
card(X)  × card(X)  matrices (complexity O(card(X)2) )  
in order to get y ,  the complexity of this algorithm is 

0 (card(U)card(Y)card(X)4) .  

4.1 Single State Recovery 
Another relevant question we would like to answer in 
connection to the mobile robot application we have in 
mind is: given a particular x 6 h -1 (y), how many steps 
do we need to take in order to determine the current 
position? A very straight forward modification of the 
previous algorithm directly gives us an answer to the 
current state-recoverability question, and we can once 
again use card(X)  as an upper bound on the number 
of steps in our algorithm since if we can bound the 
number of steps needed to recover all states, then that  
bound is certainly enough when we try to recover only 
the current state of the system. Since the previous 
algorithm answers questions concerning all states, it 
simply should be modified slightly by deciding if the 
following optimization problem has a solution: 

rain {q} 
7rEUY ,qE{O,I,...,n} 

subject to the conditional density constraint 

II~Fw(h(x(O,x,  7r)), h(x(1, x, 7r ) ) , . . . ,  h(x (q , x ,  ¢))) [~ - 1, 

which can be solved using 

0 (card(U)card(Y)card(X)3)  

operations. 

4.2 Example 
We illustrate the use of our algorithm by applying it to 
the finite automaton in Figure 1. 

In this example, the number of policies are 
card(U) card(Y) - 2 3 - 8 and if we let 71-1(y) -- Ul, ~y C 
Y, we see that  we need to take three steps in order to 
uniquely determine the state of the system. For exam- 
ple, if we start  at Xl we go through Yl ,Y2 ,Y l ,Y l  in three 
steps, versus Yl, Y2, Yl, Y2 if we start  at x2. In the first 
of these cases, the conditional density vectors evolves 
according to 

P ( Y l ) -  ( 1 / 3 , 1 / 3 , 0 , 1 / 3 , 0 , 0 )  T 

P(Yl, Y 2 ) -  ( 0 , 0 , 1 / 2 , 0 , 1 / 2 , 0 )  T 

f i ( Y l , Y 2 , Y l )  - (1 /2 ,0 ,0 ,1 /2 ,0 ,0 )  T 

P(YI, Y2, YI, YI) -- (0, 0, 0, 1, 0, 0) T, 



U2 

Yl ~ U2 Yl 

Ul ~ U l  

~y3  

F i g u r e  1: The finite automaton under investigation in 
Section 4.2. 

while the second case gives 

P(Yl) = ( 1 / 3 , 1 / 3 , 0 , 1 / 3 , 0 , 0 )  T 

P(Yl, Y 2 ) =  (0,0,1/2,0,1/2,0) T 

P(Yl ,Y2 ,Y l )  : ( 1 / 2 , 0 , 0 , 1 / 2 , 0 , 0 )  T 

P(Yl ,Y2 ,Yl ,Y2)  : (0, 0, 0, 0, 1, 0) T. 

If we iterate the forward-sweep algorithm over all poll- 
cies, we find that  the minimum number of steps re- 
quired to determine the current state of the system is 
one, and that  the optimal policy is either 

u2 if y - yl 
~(y) - u2 if y y2 

u 1 if y Y3 

or 
u2 if y - yl 

~(y) - u2 if y y2 
u2 if y Y3 

5 E x t e n s i o n s  

In this section we outline some of the possible routes 
one might take when extending the proposed HMM- 
methodology to answer further "meta"-questions when 
controlling mobile robots, and in particular we will fo- 
cus on the situation when the transitions and observa- 
tions are stochastic rather than deterministic. 

5.1 P r o b a b i l i s t i c  T r a n s i t i o n s  
In our current formulation, the edges of the g raph /map  
correspond to deterministic transitions from one land- 
mark to another, meaning that  if the robot executes Ul 
from x2 (Figure 1) it will go to x3 for sure. In reality 
however, a set of instructions that  should have led the 

robot between two locations may fail, because of uncer- 
tainty in the environment or sensors (in the case of in- 
door navigation this could be due to obstacles or traffic 
in a hallway, misidentified landmarks or hallway inter- 
sections, etc). Most control engineers are well aware 
that  uncertainty, combined with the complexity of a 
task make it difficult to design control algorithms that  
address every contingency. If one adopts that  point 
of view, the probability assigned to a node changes not 
only because of incoming observations but also because 
the last input might have taken the robot to the wrong 
place. It is therefore natural  to consider a probabil- 
ity p(Xi, Xj,Uk) for each transition, and the associated 
map that  propagates a probability distribution over a 
graph under the action of a control policy. 

The use of HMMs for capturing probabilistic transi- 
tions is even intuitive than when letting the system dy- 
namics be governed by deterministic transitions. In the 
probabilistic case we simply let the fixed-policy transi- 
tion matrix At  be such that  

n 

E aij,~ -- 1, aij,~ ~_ 0, 
i-1 

instead of, as before, aij,~ c {0, 1}. We have thus as- 
sociated a probability with the transitions and we can 
of course modify the observation matr ix B in a simi- 
lar manner by associating a probability with a certain 
observation at a certain state. 

If we now want to solve the state-recoverability prob- 
lem, we can no longer apply the algorithm derived 
from the Viterbi algorithm directly since the iteration 
bounds from Lemma 4.1 no longer hold. In fact, in 
a probabilistic setting we might strengthen our beliefs 
about  the current state by further explorations, even 
after having taken card(X) steps. However, we are 
primarily interested in finding the probability of be- 
ing at a particular state; this can be done simply by 
computing the forward, conditional density ~w( rn ) .  

The notion of observability should now be replaced by 
a measure of certainty about the current state after a 
given number of steps. This can be done in a very 
straightforward manner using the HMM formalism. 

5.2 F u r t h e r  I s sues  
If the graph associated with the environment is not 
observable, one may look for ways to remedy the sit- 
uation, by refining the graph so that  it becomes ob- 
servable. A related question could be: "what is the 
minimum number of landmarks that  I must add to the 
graph to make it observable?" This problem is non- 
trivial because the utility of a new landmark depends 
not only on its presence or absence but also on its label 
(its sensor signature). The latter will not always be 
selectable and will vary with geography. 



A related problem has to do with enhancing the graph 
with new landmarks for the purposes of increasing the 
probability of success when traveling between distant 
vertices. Aside from deciding which portion of the 
graph should be refined (replacing an edge by an edge- 
vertex-edge), one must somehow obtain the transition 
probabilities p(xi, xj, uk). A combination of simulation 
and exploration might be appropriate for that purpose. 

6 Conc lus ions  

Motivated by ongoing work on motion description lan- 
guages and landmark-based descriptions of the environ- 
ment, we have addressed two basic questions related to 
the observability of an environment description. Our 
approach begins by describing the environment as a 
directed graph whose vertices are identified with land- 
marks and whose edges represent known feedback con- 
trol instructions (MDL strings) whose execution leads 
a robot from one landmark to another. We showed 
how navigation on such graphs is related to the notion 
of observability for finite automata; we presented an 
algorithm that decides the observability of a graph as- 
sociated with our knowledge of the environment and 
showed how to find the shortest sequence of transitions 
that will allow a robot to uniquely identify its posi- 
tion on the graph. Our formulation, based on Hidden 
Markov Models, lends itself well to incorporating en- 
vironment uncertainty; in addition to being helpful for 
localization, our results can be used to decide if a robot 
has sufficient detail for navigating its environment, or 
if further exploration is needed around certain neigh- 
borhoods. 
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