
Observability and Policy Optimization for Mobile Robots

M a g n u s E g e r s t e d t ~

E l ec t r i c a l a n d C o m p u t e r E n g i n e e r i n g

G e o r g i a I n s t i t u t e of T e c h n o l o g y

A t l a n t a , G A 30332

m a g n u s O e c e , g a t e c h , edu

D i m i t r i o s H r i s t u - V a r s a k e l i s 2

M e c h a n i c a l E n g i n e e r i n g a n d

I n s t i t u e for S y s t e m s R e s e a r c h

U n i v e r s i t y of M a r y l a n d

Col lege P a r k , M D 20742

hristu@glue, umd. edu

A b s t r a c t

This work considers the use of abstract descriptions
of motion control programs and of the environment,
and explores some new problems of system theoretic
interest that arise as a result. We study the prob-
lem of active localization for a mobile robot moving on
a sparsely-described uncertain environment and show
how that problem can be posed as that of observability
of a finite automaton. We present algorithms (based
on Hidden Markov Models) that answer the question
of i) whether or not a representation of the environment
(in the form of a directed graph) is observable, and ii)
what is the shortest navigation policy that allows the
robot to uniquely identify its location on the graph.

1 I n t r o d u c t i o n

One aspect of control systems science that sets it apart
from other disciplines is its reliance on a sometimes del-
icate balance between problem formulations that are
sufficiently narrowly defined to be solvable, yet general
enough to be of practical significance. In robotics, one
of the main challenges has to do with the complexity of
the control programs that are needed to guide a robot
through even a moderately complicated task. To avoid
always having to design at the level of the actuators,
it is natural to at tempt to "tokenize" control inputs
into primitives that can be hierarchically composed
into control programs of higher complexity, similarly
to the object-oriented programming paradigm. A for-
mal framework for doing just that has been established
in the work on motion description languages (MDLs)
over the last decade [3, 13, 17]. Briefly, the idea be-
hind MDLs is to control the evolution of a continuous-
time system by symbolic commands that are eventu-
ally interpreted down to feedback laws. The lowest-

1The work by Magnus Egerstedt was sponsored by the Na-
tional Science Foundation Grant No. EHS NSF-01-161.

2The work by Dimitrios Hristu-Varsakelis was supported in
part by AFOSR Grant No. F496200110415 and in part by the
Minta Martin Fellowship

level primitives (also known as "atoms") are ordered
triples of the form (u,k,~), characterized by an open-
loop control signal, u, a closed-loop mapping, k, that
maps state and environment observations to a control
action, as well as an interrupt function, ~, that spec-
ifies the duration (temporally as well as spatially) of
the atom. Atoms, together with simple rules of com-
position, can be used to write control "programs" that
in principle could be machine-independent (see [3] for
a full description of the syntax and definition of MDL;
[12, 17] describe its "extended" counterpart, MDLe).

This paper continues the development of ideas related
to language-based descriptions of control tasks and
some of their implications for autonomous robot navi-
gation. In particular, we are interested in an abstract
description of the environment [13], in the same manner
that MDL strings offer an abstract description of con-
trol laws. Although such descriptions are appealing for
the reasons outlined above, they give rise to new control
problems of higher complexity, because one now oper-
ates on a space of primitives (themselves composed of
yet simpler primitives) as opposed to the spaces of in-
put and output signals to and from the underlying dy-
namical system. It is exactly one such "meta"-problem
that we would like to explore here, namely the problem
of when (and by what actions) it is possible for a mobile
robot to localize itself in its environment (represented
as a "web" of landmarks together with instructions for
getting from one to another). For other treatments of
such "meta"-problems in robot control, see for example
[9, 14, 19].

The paper is structured as follows: In Section 2 we
formulate the main problem and show how it is related
to the notion of observability. We then, in Section 3,
reformulate the problem as a Hidden Markov Model
problem; an algorithmic solution is presented in Section
4, along with a discussion of some natural extensions
of this work, currently in progress.

2 Mot ion Descr ipt ion Languages and Ro b o t
Navigat ion on Graphs

For the purposes of this work, we consider a mobile
robot, navigating in a partially known environment,
which need not be structured. The environment is
represented not as a contiguous map, but rather as
a series of landmarks, representing areas of the world
tha t are deemed "interesting" or "relevant" (for work
related to graph-based representations of the environ-
ment see [7, 16, 15]; for recent work combining MDLs
and landmark-based navigation see [13]).

We assume tha t once the robot is within sensory range
of a landmark it can drive towards or around tha t land-
mark using a feedback control strategy. Furthermore,
the robot can move between the different regions of
a t t ract ion around the landmarks using a fixed num-
ber of control strategies which are coded as "words"
in a motion description language (e.g. [13]). These
MDL programs serve as instructions for driving the
robot between established landmarks, even though fail-
ure to reach a given landmark is still possible due to
temporal or spatial environment uncertainty. We note
tha t MDL programs are used to describe geographical
relationships not in t e rms of where a location is, but
what one m u s t do to get there. This gives rise to a di-
rected graph, whose vertices xi, i = 1, ..., n correspond
to landmarks and whose edges eij correspond to the
existence of a control program that drives the robot be-
tween the regions of a t t ract ion around xi and x j . The
aim is to replace- when possible - the details of a map
by a feedback program. We remark tha t transit ions
between landmark need not be deterministic, i.e. exe-
cuting the instructions in eij from xi may not always
lead to x j . This allows one to bring uncertainty into
the fold, in the form of a set of probability-preserving
maps from the set of probability density functions de-
fined on Xl,..., xn, to itself. This idea will be explored
in Section 5.

Under the scenario described above, the main question
this paper is concerned with is tha t of observability:
Given tha t the robot starts out at a part icular land-
mark of type y, how should the robot move around in
the environment in order to recover its current position
(i.e. the current node in the reachability graph). This
question is closely related to tha t of observability for
finite automata , as defined in [5] 1 , and in this paper
we derive an algorithm for determining whether or not
a given au tomaton is observable, using the Viterbi al-
gori thm (see for example [8]) for Hidden Markov Mod-
els (HMMs). Because the transitions between different
nodes will have a probability of success associated with
them, we will also produce an algorithm that generates

1This concept of observability differs from that in [1], where
observability is defined with respect to any input sequence.

the probability of recovering the state of the system.

2.1 Prel iminaries
We will choose to describe the continuous-time dynam-
ics of the robot by i - F (z , v) , w - H (z) , where
z C Z C ~n is the state of the system, w C W C ~P
is the observation made by the robot, and v C V C ~k
is the input to the system. As already discussed in the
introduction, we let the symbolic inputs be triples of
the form (v,k,~) , where v c V is the open-loop com-
ponent, k • W -+ V is the feedback mapping, and

• W --+ {0, 1 } is the interrupt. A string of such input-
triples is operated on by the dynamic system as

-- F(Z , k l (W, Vl)); to < t < T1

- F (z , kq(w, Vq)); Tq-1 < t (Tq,

where Ti denotes the time at which the interrupt [i
changes from 0 to 1.

Now, assume tha t the robot is moving around in a
partially s t ructured environment, populated by a fixed
number of landmarks. Let X denote the set of these
landmarks, and assume furthermore tha t tha t each
landmark x C X is of a part icular type y c Y, where
Y is the finite set of possible landmark types, such as
"door", "stairs", "hall", etc.

We now note tha t if we use a part icular input (v, k, ~)
for moving the robot between two landmarks, we can
abstract away the continuous dynamics of the system,
as long as we know that this is a successful control pol-
icy. (We will see later on tha t only a given probability
of success is needed for this construction to be mean-
ingful.) At this level of abstraction, the evolution of
the robot can thus be defined by a finite au tomaton
(X, Y, U, f , h), where U is the finite set of control ac-
tions, f : X x U --+ X, and h : X --+ Y. The evolution
of the au tomaton is given by Xk+l = f (x k , u k) , Yk =
h (xk) .

2 . 2 0 b s e r v a b i l i t y and Reachabi l i ty on Graphs
Given tha t the robot starts out at a landmark of type
Y0, how should it move around in the environment in
order to figure out where it is? In other words, we
want to construct an optimal policy Try 0 : Y --+ U in
such a way tha t we know exactly where we are after a
minimum number of steps, given tha t the robot starts
at any x0 C h - l (y0) .

This problem, is related to the concept of observability
for finite state machines, as defined in [5]" Consider
the finite au tomaton (X, Y, U, f , h). We let the output
sequence map (9" Z + x X x U Y -~ Y * be given as

O (q , x , Tr) -- h (x l) - h(x2) " " h(xq) ,

where 7r • Y -+ U, and Xl - x, x2 :
f (x l , " z (h (X l))) , . . . , X q - f (X q _ l , " z (h (X q _ l))) . Note

tha t in the output sequence map y l " y 2 denotes the
concatenation of the letters yl and y2 from the finite
alphabet Y, and O(q , x , Tr) C Yq C Y*, where YP is
the set of words of length p over Y, and Y* is the free
monoid over Y.

Wha t we want to do is to establish conditions for when
it is possible to reconstruct the state of the system,
and we note tha t this is possible if there exists q, 7r,
such tha t O(q, x, 7r) is injective in its second argument.
It should be noted tha t this is in fact only a sufficient
condition since injectivity of the output-sequence map
implies tha t we can reconstruct not only the current
state but also all previous states, including the initial
s tate as long as we know the system dynamics. How-
ever, to be able to reconstruct the current state does
not imply tha t we can recover the previous states due
to the lack of backward uniqueness for discrete event
systems [4].

D e f i n i t i o n 2.1 (Observability) A f inite au tomaton
(X, Y, U, f , h) is observable if there exist a positive inte-
ger qobs and an output- to- input mapping Uobs : Y -+ U
that satisfies (-9(qobs,Xl, 7robs) ¢ (-9(qobs,X2, 7robs) for all
Xl , X2 C X , Xl ¢ x2.

It is clear tha t this definition does not provide us with
a constructive method for determining if a given finite
au tomaton is in fact observable, and in the remainder
of this paper we investigate the following two questions:

P r o b l e m 2.1 (Observabil ity) Given
tomaton, determine if it is observable?

a f inite au-

P r o b l e m 2.2 (Recoverabil i ty) Given an observable
f inite automaton, and an initial state xo c h - l (yO),
f ind the optimal policy Try o that min imizes the number
of steps required in order to specify the current state of
the sys tem exactly.

We note already at this point tha t if we have a con-
structive method for finding the smallest q, and a cor-
responding 7r tha t renders the output sequence map
injective, then we also have found an upper bound on
the minimum number of steps we need to take from
any state in order to recover the state of the system.

3 Hidden Markov Mode l s

A natural way of thinking about the state-
recoverability questions of interest is in terms of beliefs,
i.e. how likely is it tha t we are at a particular state,
given a string of observed landmarks. We will thus
be working with beliefs, distr ibuted over the different

states, which makes it very natural to cast the problem
as a Hidden Markov Model problem.

Let the probability tha t we are at a part icular state xi
at t ime k be given by

p (k) -P(x(k)

and form the distribution vector p(k) =
(Pl (k) , . . . ,pn(~)) T, where c a r d (X) - n. If we
commit ourselves to using a given policy 7r • Y -+ U,
the evolution of these probabilities is given by
p(k + 1) - A~p(k) , where A t - [aij,~]ij is the
transit ion matr ix associated with policy 7r formed by

aij,~ - P (x (k + 1) - xi I x (k) - x j , uk -- 7r(h(xk))).

If the system is at state x, we furthermore make the
observation y - h(x), i.e. if we set

bij - P (y - yi I x - x j),

we can form the observation matr ix B - [bij], and get
the linear observation relation q(k) - Bp (k) , where

qi(k) - P (y (k) - Yi), i - 1, . . . , m,

with ca rd (Y) - m.

Even though our transitions and observations are de-
terministic (i.e. B only contains zeros and ones), our fi-
nite au tomaton can be cast as a Hidden Markov Model
under a fixed policy, which allows us to draw on the
rich l i terature on HMMs. If we assume tha t we tra-
verse the state space of the automaton, using the policy
7r, then during q steps we observe the landmark types
y (1) , y (2) , . . . , y (q) . If we form the single observation
matr ix B(yk) = diag(bk,1, bk ,2 , . . . , bk,n), associated
with the observation ya, and let 7 = (1 / n , . . . , 1 /n) T,
then the forward sweep algorithm (see for exam-
ple [8]) tells us tha t the conditional density vector
i@w(y(1) , y (2) , . . . , y(q)), defined as

I P(x (q) - Xl [y (1) , . . . , y(q), 7)

)
P(x(q) - xn I i (1) , , Y(q), 7)

is given by

(y(1) , y (2) , . . . , y(q)) -
_ _ 1 B (y (q)) A ~ B (y (q 1))A~ A ~ B (y (1)) 7
- - J ~ q ,

where Nq is a normalization factor.

The problem concerning the reconstruction of the cur-
rent state, given a part icular policy 7r, is thus equivalent
to tha t of determining if iS~w is a unit vector after a
given number of steps, i.e. if I li5~w[l~ - 1. Tha t this
is the case follows directly from the fact tha t only then

do we know, for certain, exactly what the current state
of the system is. The problem of observability (recov-
ering all the previous states of the system), can also be
cast on a similar form using the Viterbi algorithm for
HMMs:

1(1 1 1) T rl---~ , , . . . ,
~FW, i(k) -- P (x (k) - xi I y(1), y (2) , . . . , y(k))
P~BW, i(k) -- P (x (k) - xi l y (k + 1),y(k + 2) , . . . , y (m))
P~Fw(k) -- -~--~B(y(k))A. . . AB(y(1))r~
P~BW(k) _ 1 f t B (y (k + 1))~i f t B (y (m)) v
ft - - A TD, where D is a diagonal normalization matrix
~-(]g) __ 1 -Tr

~ P F w ® P ~ w ,

where ® denotes component-wise product.

Our findings thus far can be summarized as follows-

• Observability after m steps ¢~
1 , k - 1 , . . . , m

• Recoverability after m steps ¢~ lllS~w(rn)ll~ - 1

4 D e c i d i n g O b s e r v a b i l i t y a n d Related Control
Pol ic ies

We can thus answer the questions posed in Problems
2.1 and 2.2 by computing the conditional densities as-
sociated with every policy starting from every state
(landmark). One issue that needs to be resolved has to
do with when to terminate the iterations. As a conse-
quence of the Pidgeon Hole Principle (see for example
[10] for an accessible t reatment of this classic result)
we can obtain such a bound, and we state this fact as
a lemma:

L e m m a 4.1 (I t e r a t i o n B o u n d s) I f the automaton
A is observable then it is observable in card (X) steps,
i.e. if O(q, Tr,.) is injective for some (Tr, q) then it is
injective for (Tr, card(X)) as well.

In other words, observability can be determined by de-
ciding if the following optimization problem has a so-
lution:

min .,n}{q }
7rEUY ,qE{0,1,..

subject to the injectivity constraint

O(q, Xl, 7r) # O(q, x2,7r), VXl # x2 6 X .

The constraint can furthermore be reformulated as

I I~ (h (x (O,x , 7r)), h (x (1 , x , 7r)), . . . , h (x (q , x , ¢)))l l~ = 1,

which has to hold Vx 6 X, where we use x (k , x , 7r) as
shorthand for

x(0, x, ~) = x
x (k , x , 7r) = f (x (k - 1,x, 7r), 7r(h(x(k - 1,x , 7r)))

k = 1 , 2 , . . .

A straight forward way to solve the last problem is
to iterate over all policies, and then compute the con-
ditional densities from each initial state over a max-
imum of card(X) steps. Since we are multiplying
card(X) × card(X) matrices (complexity O(card(X)2))
in order to get y , the complexity of this algorithm is

0 (card(U)card(Y)card(X)4) .

4.1 Single State Recovery
Another relevant question we would like to answer in
connection to the mobile robot application we have in
mind is: given a particular x 6 h -1 (y), how many steps
do we need to take in order to determine the current
position? A very straight forward modification of the
previous algorithm directly gives us an answer to the
current state-recoverability question, and we can once
again use card(X) as an upper bound on the number
of steps in our algorithm since if we can bound the
number of steps needed to recover all states, then that
bound is certainly enough when we try to recover only
the current state of the system. Since the previous
algorithm answers questions concerning all states, it
simply should be modified slightly by deciding if the
following optimization problem has a solution:

rain {q}
7rEUY ,qE{O,I,...,n}

subject to the conditional density constraint

II~Fw(h(x(O,x, 7r)), h(x(1, x, 7r)) , . . . , h(x (q , x , ¢))) [~ - 1,

which can be solved using

0 (card(U)card(Y)card(X)3)

operations.

4.2 Example
We illustrate the use of our algorithm by applying it to
the finite automaton in Figure 1.

In this example, the number of policies are
card(U) card(Y) - 2 3 - 8 and if we let 71-1(y) -- Ul, ~y C
Y, we see that we need to take three steps in order to
uniquely determine the state of the system. For exam-
ple, if we start at Xl we go through Yl ,Y2 ,Y l ,Y l in three
steps, versus Yl, Y2, Yl, Y2 if we start at x2. In the first
of these cases, the conditional density vectors evolves
according to

P (Y l) - (1 / 3 , 1 / 3 , 0 , 1 / 3 , 0 , 0) T

P(Yl, Y 2) - (0 , 0 , 1 / 2 , 0 , 1 / 2 , 0) T

f i (Y l , Y 2 , Y l) - (1 /2 ,0 ,0 ,1 /2 ,0 ,0) T

P(YI, Y2, YI, YI) -- (0, 0, 0, 1, 0, 0) T,

U2

Yl ~ U2 Yl

Ul ~ U l

~y3

F i g u r e 1: The finite automaton under investigation in
Section 4.2.

while the second case gives

P(Yl) = (1 / 3 , 1 / 3 , 0 , 1 / 3 , 0 , 0) T

P(Yl, Y 2) = (0,0,1/2,0,1/2,0) T

P(Yl ,Y2 ,Y l) : (1 / 2 , 0 , 0 , 1 / 2 , 0 , 0) T

P(Yl ,Y2 ,Yl ,Y2) : (0, 0, 0, 0, 1, 0) T.

If we iterate the forward-sweep algorithm over all poll-
cies, we find that the minimum number of steps re-
quired to determine the current state of the system is
one, and that the optimal policy is either

u2 if y - yl
~(y) - u2 if y y2

u 1 if y Y3

or
u2 if y - yl

~(y) - u2 if y y2
u2 if y Y3

5 E x t e n s i o n s

In this section we outline some of the possible routes
one might take when extending the proposed HMM-
methodology to answer further "meta"-questions when
controlling mobile robots, and in particular we will fo-
cus on the situation when the transitions and observa-
tions are stochastic rather than deterministic.

5.1 P r o b a b i l i s t i c T r a n s i t i o n s
In our current formulation, the edges of the g raph /map
correspond to deterministic transitions from one land-
mark to another, meaning that if the robot executes Ul
from x2 (Figure 1) it will go to x3 for sure. In reality
however, a set of instructions that should have led the

robot between two locations may fail, because of uncer-
tainty in the environment or sensors (in the case of in-
door navigation this could be due to obstacles or traffic
in a hallway, misidentified landmarks or hallway inter-
sections, etc). Most control engineers are well aware
that uncertainty, combined with the complexity of a
task make it difficult to design control algorithms that
address every contingency. If one adopts that point
of view, the probability assigned to a node changes not
only because of incoming observations but also because
the last input might have taken the robot to the wrong
place. It is therefore natural to consider a probabil-
ity p(Xi, Xj,Uk) for each transition, and the associated
map that propagates a probability distribution over a
graph under the action of a control policy.

The use of HMMs for capturing probabilistic transi-
tions is even intuitive than when letting the system dy-
namics be governed by deterministic transitions. In the
probabilistic case we simply let the fixed-policy transi-
tion matrix At be such that

n

E aij,~ -- 1, aij,~ ~_ 0,
i-1

instead of, as before, aij,~ c {0, 1}. We have thus as-
sociated a probability with the transitions and we can
of course modify the observation matr ix B in a simi-
lar manner by associating a probability with a certain
observation at a certain state.

If we now want to solve the state-recoverability prob-
lem, we can no longer apply the algorithm derived
from the Viterbi algorithm directly since the iteration
bounds from Lemma 4.1 no longer hold. In fact, in
a probabilistic setting we might strengthen our beliefs
about the current state by further explorations, even
after having taken card(X) steps. However, we are
primarily interested in finding the probability of be-
ing at a particular state; this can be done simply by
computing the forward, conditional density ~w(rn) .

The notion of observability should now be replaced by
a measure of certainty about the current state after a
given number of steps. This can be done in a very
straightforward manner using the HMM formalism.

5.2 F u r t h e r I s sues
If the graph associated with the environment is not
observable, one may look for ways to remedy the sit-
uation, by refining the graph so that it becomes ob-
servable. A related question could be: "what is the
minimum number of landmarks that I must add to the
graph to make it observable?" This problem is non-
trivial because the utility of a new landmark depends
not only on its presence or absence but also on its label
(its sensor signature). The latter will not always be
selectable and will vary with geography.

A related problem has to do with enhancing the graph
with new landmarks for the purposes of increasing the
probability of success when traveling between distant
vertices. Aside from deciding which portion of the
graph should be refined (replacing an edge by an edge-
vertex-edge), one must somehow obtain the transition
probabilities p(xi, xj, uk). A combination of simulation
and exploration might be appropriate for that purpose.

6 Conc lus ions

Motivated by ongoing work on motion description lan-
guages and landmark-based descriptions of the environ-
ment, we have addressed two basic questions related to
the observability of an environment description. Our
approach begins by describing the environment as a
directed graph whose vertices are identified with land-
marks and whose edges represent known feedback con-
trol instructions (MDL strings) whose execution leads
a robot from one landmark to another. We showed
how navigation on such graphs is related to the notion
of observability for finite automata; we presented an
algorithm that decides the observability of a graph as-
sociated with our knowledge of the environment and
showed how to find the shortest sequence of transitions
that will allow a robot to uniquely identify its posi-
tion on the graph. Our formulation, based on Hidden
Markov Models, lends itself well to incorporating en-
vironment uncertainty; in addition to being helpful for
localization, our results can be used to decide if a robot
has sufficient detail for navigating its environment, or
if further exploration is needed around certain neigh-
borhoods.

R e f e r e n c e s

[1] A. Balluchi, L. Benvenuti, A.L. Sangiovanni-
Vincentelli. Observers for Hybrid Systems with Contin-
uous State Resets. In Proceedings of the IEEE Mediter-
ranean Conference on Control, Lisbon, Portugal, 2002.

[2] A. Bandera, C. Urdiales, and F. Sandoval. Au-
tonomous global localisation using Markov chains and
optimised sonar landmarks. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and @stems, pp. 288-293,
2000.

[3] R.W. Brockett. Hybrid Models for Motion Con-
trol Systems. In Perspectives in Control, H. Trentelman
and J.C. Willems, eds., pp. 29-54, Birkhauser, Boston,
1993.

[4] C.G. Cassandras and S. Lafortune. Introduction
to Discrete Event Systems, Kluwer Academic Publish-
ers, Boston, MA, 1999.

[5] M. Egerstedt and R.W. Brockett. Feedback Can
Reduce the Specification Complexity of Motor Pro-

grams. In Proc. IEEE Conference on Decision and
Control, Orlando, FL, Dec. 2001.

[6] M. Egerstedt. Some Complexity Aspects of the
Control of Mobile Robots. To appear in the American
Control Conference, Anchorage, Alaska, May, 2002.

[7] S. Fabrizi and T. Saffioti. Extracting Topology-
Based Maps from Gridmaps. In Proc. IEEE Int. Conf.
on Robotics and Automation, pp. 29?2-29?8, 2000.

[8] G .D . Forney. The Viterbi Algorithm. In Pro-
ceedings of the IEEE, pages 268-2?8, 1973.

[9] D. Fox, W. Burgard and S. Thrun. Active
Markov Localization for Mobile Robots. Robotics and
Autonomous @stems, vol. 25, pages 195-207, 1998.

[10] J.E. Hopcroft, R. Motwani, and J.D. Ullman. In-
troduction to Automata Theory, Languages, and Com-
putation (2nd Edition). Addison Wesley, Reading, MA,
2000.

[11] D. Hristu-Varsakelis. Robot formations: Learn-
ing minimum-length paths on uneven terrain. In Proc.
IEEE Mediterranean Conf. on Control and A utoma-
tion, 2000.

[12] D. Hristu-Varsakelis, L. D'Anna, P. S. Carlos,
F. Zhang, S. Andersson and P. S. Krishnaprasad. The
MDLe Engine: A software tool for hybrid motion con-
trol. Tech. Report 2000-54, Institute for Systems Re-
search.

[13] D. Hristu-Varsakelis and S. Andersson. Directed
Graphs and Motion Description Languages for Robot
Navigation and Control. In Proc. IEEE Int. Conf. on
Robotics and Automation, pp. 2689-94, 2002.

[14] J.P. Kalebling, A. R. Cassandra and J. A. Kurien.
Acting under uncertainty: Discrete Bayesian models
for mobile-robot navigation. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 1996.

[15] A. Lambert and Th. Fraichard. Landmark-based
safe path planning for car-like robots. In Proc IEEE
Int. Conf. on Robotics and Automation, pp. 2046-2051,
2000.

[16] A. Lazanas and J.-C. Latombe. Landmark-based
robot navigation. Algorithmica, 13(5):472-501, May
1995.

[17] V. Manikonda, P.S. Krishnaprasad, and J.
Hendler. Languages, Behaviors, Hybrid Architectures
and Motion Control. In Mathematical Control The-
ory, Eds. Willems and Baillieul, pp. 199-226, Springer-
Verlag, 1998.

[18] R. Sire and G. Dudek. Mobile robot localiza-
tion from learned landmarks. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and @stems, pp. 1060-
1065, 1998.

[19] S. Thrun. Bayesian landmark learning for too-
bile robot localization. Machine Learning, 33(1):41-76,
Oct. 1998.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 41st IEEE Conference on Decision and Control Las Vegas, Nevada USA, December 2002
	session: FrA01-2
	footer: 0-7803-7516-5/02/$17.00 ©2002 IEEE
	01: 3596
	02: 3597
	03: 3598
	04: 3599
	05: 3600
	06: 3601

